Studies on Neurospora chromosome segment duplications (Dps) performed since the publication of Perkins's comprehensive review in 1997 form the focus of this article. We present a brief summary of Perkins's seminal work on chromosome rearrangements, specifically, the identification of insertional and quasiterminal translocations that can segregate Dp progeny when crossed with normal sequence strains (i.e., T x N). We describe the genome defense process called meiotic silencing by unpaired DNA that renders Dp-heterozygous crosses (i.e., Dp x N) barren, which provides a basis for identifying Dps, and discuss whether other processes also might contribute to the barren phenotype of Dp x N and Dp x Dp crosses. We then turn to studies suggesting that large Dps (i.e., >300 kbp) can allow smaller gene-sized duplications to escape another genome defense process called repeat-induced point mutation (RIP), possibly by titration of the RIP machinery. Finally, we assess whether in natural populations dominant RIP suppressor Dps provide an "RIP-free" niche for evolution of new genes following the duplication of existing genes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.200800098DOI Listing

Publication Analysis

Top Keywords

chromosome segment
8
segment duplications
8
genome defense
8
defense process
8
process called
8
duplications neurospora
4
neurospora crassa
4
crassa barren
4
barren crosses
4
crosses beget
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!