Microbial volatile organic compounds.

Crit Rev Toxicol

University of Kuopio, Department of Environmental Science, Kuopio, Finland.

Published: March 2009

Microbial volatile organic compounds (MVOCs) are a variety of compounds formed in the metabolism of fungi and bacteria. Of more than 200 compounds identified as MVOCs in laboratory experiments, none can be regarded as exclusively of microbial origin or as specific for certain microbial species. Thus, the recognition of microbially contaminated areas by MVOC measurements is not successful with current methods. In this review, the basic physical and chemical properties of 96 typical MVOCs have been summarised. Of these, toxicological and exposure data were gathered for the 15 MVOCs most often analysed and reported in buildings with moisture and microbial damage. The most obvious health effect of MVOC exposure is eye and upper-airway irritation. However, in human experimental exposure studies, symptoms of irritation have appeared at MVOC concentrations several orders of magnitude higher than those measured indoors (single MVOC levels in indoor environments have ranged from a few ng/m(3) up to 1 mg/m(3)). This is also supported by dose-dependent sensory-irritation response, as determined by the American Society for Testing and Materials mouse bioassay. On the other hand, the toxicological database is poor even for the 15 examined MVOCs. There may be more potent compounds and other endpoints not yet evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408440802291497DOI Listing

Publication Analysis

Top Keywords

microbial volatile
8
volatile organic
8
organic compounds
8
microbial
5
compounds
5
mvocs
5
compounds microbial
4
compounds mvocs
4
mvocs variety
4
variety compounds
4

Similar Publications

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

Exploring synergistic interactions of ethyl acetate removal and community ecology using magnetite-entrapped biofilters.

Environ Res

January 2025

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China. Electronic address:

Emissions of ethyl acetate (EA) exhaust from industrial sources can cause environmental and health risks. EA can be effectively removed by biological filtration with low operating costs and promising good benefits. This study demonstrated the synergistic effect of using magnetite and pebbles as bio-packing in promoting microbial activity and microbial abundance for EA degradation.

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Extreme smells - microbial production of volatile organic compounds at the limits of life.

FEMS Microbiol Rev

January 2025

Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.

Microbial Volatile Organic Compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste by-products to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g.

View Article and Find Full Text PDF

The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!