The efficient use of somatic cell nuclear transfer (SCNT), in conjunction with genetic modification of donor cells provides a general means to add or inactivate genes in mammals. This strategy has substantially improved the efficacy of producing genetically identical animals carrying mutant genes corresponding to specific human disorders. Lentiviral (LV) vectors have been shown to be well suited for introducing transgenes into cells to be used as donor nuclei for SCNT. In the present study, we established an LV vector-based transgene delivery approach for producing live transgenic domestic cats by SCNT. We have demonstrated that cat fetal fibroblasts can be transduced with EGFP-encoding LV vectors bearing various promoters including the human cytomegalovirus immediate early (hCMV-IE) promoter, the human translation elongation factor 1alpha (hEF-1alpha) promoter and the human ubiquitin C (hUbC) promoter. Among the promoters tested, embryos reconstructed with donor cells transduced with a LV-vector bearing the hUbC promoter displayed sustained transgene expression at the blastocyst stage while embryos reconstructed with LV vector-transduced cells containing hCMV-IE-EGFP or hEF-1alpha-EGFP cassettes did not. After transfer of 291 transgenic cloned embryos into the oviducts of eight recipient domestic cats (mean =36.5 +/- 10.1), three (37.5%) were diagnosed to be pregnant, and a total of six embryos (2.1%) implanted. One live male offspring was delivered by Cesarean section on day 64 of gestation, and two kittens were born dead after premature delivery on day 55. In summary, we report the birth of transgenic cloned kittens produced by LV vector-mediated transduction of donor cells and confirm that cloned kittens express the EGFP reporter transgene in all body tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474156PMC
http://dx.doi.org/10.1089/clo.2008.0054DOI Listing

Publication Analysis

Top Keywords

transgenic cloned
12
cloned kittens
12
donor cells
12
domestic cats
8
promoter human
8
hubc promoter
8
embryos reconstructed
8
cells
5
generation domestic
4
transgenic
4

Similar Publications

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

WD40 proteins PaTTG1 interact with both bHLH and MYB to regulate trichome formation and anthocyanin biosynthesis in Platanus acerifolia.

Plant Sci

January 2025

Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:

Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexe consists of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.

View Article and Find Full Text PDF

from Improves Drought Tolerance by Reducing Stomatal Aperture and Inducing ABA Receptor Family Genes in Transgenic Poplar Plants.

Int J Mol Sci

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

Overexpression of from Bunge Enhanced Drought and Salt Tolerance by Improving ROS-Scavenging Capability.

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China.

() genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, was identified as being associated with seed drought tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!