Doxycycline (DOX) is widely used as a pharmacological agent and as an effector molecule in inducible gene expression systems. For most applications, it is important to determine whether the DOX concentration reaches the level required for optimal efficacy. We developed a sensitive bioassay for measuring the DOX concentration in biological samples. We used a modified HeLa cell line with the luciferase reporter gene under the control of the DOX-inducible Tet-On system for regulation of gene expression. These HeLaDOX cells constitutively express a novel variant of the rtTA transcriptional activator protein that is highly DOX-sensitive. Incubation of the cells with a DOX-containing biological sample triggers luciferase expression, which can be quantitated by standard methods. This bioassay is sensitive, with a DOX detection limit of 22 ng/ml in plasma. The assay was used to determine the DOX concentration in plasma derived from DOX-treated rhesus macaques and mice. Furthermore, we found that the DOX concentration in murine cerebrospinal fluid is 31-fold lower than the concurrent plasma DOX level. This bioassay for the quantification of DOX concentration in biological samples has several advantages over high-performance liquid chromatography-based and microbiological assays: (1) multiple samples can be assayed in a single experiment; (2) only small sample volumes are required; (3) the assay has a low detection limit; and (4) the assay can be performed in any cell culture laboratory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2008.182 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh.
The study aimed to analyze five commonly used veterinary antibiotics: tetracycline (TC), oxytetracycline (OTC), doxycycline (DOX), chlortetracycline (CTC), and enrofloxacin (ENR) in different types of milk samples, risk estimation, and to investigate the correlation between the presence of multiple antibiotic residues. About 27 milk samples, such as raw milk from collection centers, processed milk from processing plants, pasteurized, UHT, and flavored milk from retail stores, were examined using RP-HPLC against five veterinary antibiotics in Dhaka, Bangladesh. The correlation between antibiotics was analyzed using Pearson's correlation test.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil.
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines.
View Article and Find Full Text PDFToxicol Rep
June 2025
Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.
Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Chapman University School of Pharmacy, Irvine, California 92618, United States.
Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!