In 1998, the U.S. Environmental Protection Agency (EPA) initiated a major air quality program known as the Particulate Matter (PM) Supersites Program. The Supersites Program was a multiyear, $27 million air quality monitoring program consisting of eight regional air quality projects located throughout the United States, each with differing atmospheric pollution conditions resulting from variations in source emissions and meteorology. The overall goal of the program was to elucidate source-receptor relationships and atmospheric processes leading to PM accumulation on urban and regional scales; thus providing the scientific underpinning for modeling and data analysis efforts to support State Implementation Plans and more effective risk management approaches for PM. The program had three main objectives: (1) conduct methods development and evaluation, (2) characterize ambient PM, and (3) support health effects and exposure research. This paper provides a synthesis of key scientific findings from the Supersites Program and related studies. EPA developed 16 science/policy-relevant questions in conjunction with state and other federal agencies, Regional Planning Organizations, and the private sector. These questions were addressed to the extent possible, even given the vast amount of new information available from the Supersites Program, in a series of papers published as a special issue of the Journal of Air & Waste Management Association (February 2008). This synthesis also includes discussions of: (1) initial Supersites Program support for air quality management efforts in specific locations throughout the United States; (2) selected policy-relevant insights, based on atmospheric sciences findings, useful to air quality managers and decision makers planning emissions management strategies to address current and future PM National Ambient Air Quality Standards (NAAQS) and network planning and implementation; (3) selected health-relevant insights interpreted from atmospheric sciences findings in light of future directions for health and exposure scientists planning studies of the effects of PM on human health; and (4) selected knowledge gaps to guide future research. Finally, given the scope and depth of research and findings from the Supersites Program, this paper provides a reference source so readers can glean a general understanding of the overall research conducted and its policy-relevant insights. Supporting details for the results presented are available through the cited references. An annotated table of contents allows readers to easily find specific subject matter within the text.

Download full-text PDF

Source

Publication Analysis

Top Keywords

supersites program
28
air quality
24
program
11
key scientific
8
scientific findings
8
health-relevant insights
8
environmental protection
8
particulate matter
8
matter supersites
8
program studies
8

Similar Publications

An audacious approach to conservation.

Trends Ecol Evol

November 2024

Georgina Mace Centre, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. Electronic address:

Article Synopsis
  • New digital technology could change the way we take care of nature, but we need a better plan to use it!
  • Focusing on special areas called 'super-sites' can help us create better systems for understanding and managing ecosystems!
  • By using real-time data and simulations, we can make smarter choices for protecting nature that can change as needed!
View Article and Find Full Text PDF

The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite.

View Article and Find Full Text PDF

A broadly reactive antibody targeting the N-terminal domain of SARS-CoV-2 spike confers Fc-mediated protection.

Cell Rep Med

December 2023

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation.

View Article and Find Full Text PDF

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!