Purpose Of Review: The rising incidence of type 2 diabetes is due, in part, to the detrimental effects of certain fatty acids on pancreatic beta-cell function and viability. The present review examines recent advances in the understanding of the molecular mechanisms by which fatty acids influence the life and death of beta cells.
Recent Findings: There are important differences in the cytotoxic potential of fatty acids, with long-chain saturated molecules being the most potent. By contrast, monounsaturates and polyunsaturates are relatively well tolerated and, in some cases, are actively cytoprotective. The mechanisms underlying the toxicity of the saturates may reflect a decrease in protein processing, which drives the accumulation of unfolded proteins in the endoplasmic reticulum. This triggers an apoptotic response by virtue of enhanced endoplasmic reticulum stress and induction of CHOP-10 synthesis. Alterations in the regulatory control of other proapoptotic genes via changes in microRNA synthesis may also contribute. The cytoprotection deriving from incubation with long-chain mono-unsaturates is probably receptor mediated and involves antagonistic actions on the effector arm of the endoplasmic reticulum stress pathway.
Summary: The findings have implications for the development of new therapeutic agents designed to minimize beta-cell dysfunction and the loss of beta-cell viability in type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MCO.0b013e328321e423 | DOI Listing |
Diabetologia
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Aims/hypothesis: Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk.
View Article and Find Full Text PDFPlanta
January 2025
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
J Mass Spectrom
February 2025
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.
View Article and Find Full Text PDFJ Endocrinol
January 2025
N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!