Lipase specificity in the transacylation of triacylglycerin.

J Oleo Sci

Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-1 Kichijoji-kitamachi 3, Musashino-shi, Tokyo 180-8633, Japan.

Published: April 2009

The Lipase-catalyzed transesterification method is utilized as a safe and effective method for preparing various structured oils. As each lipase shows different fatty acid specificity, it is important to select an appropriate lipase according to fatty acid species incorporated into oils. In the present study fatty acid specificities of lipases obtained from different origins were evaluated by transacylation between oils and various fatty acids. Of 12 kinds of lipases used, 5 lipases have 1,3-regio specificity and 7 lipases have non-regio specificity for hydrolysis of oils. Fatty acid substrates of transacylation were 8 saturated fatty acids with 6 to 18 carbon numbers, and C18 unsaturated fatty acids with different double bonds such as oleic, linoleic and linolenic acids. As results shown below, most lipases used gave high transacylation ratios for lauric acid when saturated fatty acids are compared and a different tendency in C18 unsaturated fatty acids. Regarding the fatty acid specificity of different lipases, fatty acid specificity of each lipase differed by its origin. Almost all lipases with or without regio specificities showed high selectivity for C10 and C12, especially C12 saturated fatty acid, and a little selectivity for C14-20 saturated fatty acids. On the other hand, C6 saturated fatty acid was little incorporated into TAG, and C18 fatty acids with higher unsaturation were incorporated easily into TAG. Transacylation activity defined as an acydolysis unit (AU) of an activity which is able to incorporate 1 micromol of C12 saturated fatty acid into TAG for 24h represents high relationship with the known hydrolysis activity. It is considered that structured lipids can be prepared effectively by transacylation based on the proper selection of lipase with higher transacylation or hydrolysis activities for specific fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.58.123DOI Listing

Publication Analysis

Top Keywords

fatty acid
36
fatty acids
32
saturated fatty
24
fatty
17
acid specificity
12
acid
10
acids
9
lipase fatty
8
oils fatty
8
specificity lipases
8

Similar Publications

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis.

Scand J Gastroenterol

January 2025

Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.

Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.

Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.

View Article and Find Full Text PDF

Machine learning applications in healthcare clinical practice and research.

World J Clin Cases

January 2025

Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .

View Article and Find Full Text PDF

Gut microbiota involvement in the effect of water-soluble dietary fiber on fatty liver and fibrosis.

Biosci Microbiota Food Health

August 2024

Department of Gastroenterology, Hematology and Clinical immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki-shi, Aomori 036-8562, Japan.

The beneficial effects of water-soluble dietary fiber on liver fat and fibrosis involve the gut microbiota; however, few epidemiological studies have investigated this association. This large-scale epidemiological study aimed to determine the effect of water-soluble dietary fiber intake on liver fat and fibrosis via gut microbiota for the general population. We divided low- and high-intake groups by median daily water-soluble dietary fiber intake and matched background factors by propensity score matching for sex and age.

View Article and Find Full Text PDF

Introduction: Rumen-protected fat (RPF) is a vital dietary energy source for dairy cows. However, the influences of RPF on rumen volatile fatty acid (VFA) content and bacterial communities in goats are poorly documented.

Methods: In this study, 12 castrated male goats (body weight [BW]: 13.

View Article and Find Full Text PDF

Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.

Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!