The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses.

Microbiology (Reading)

Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México.

Published: February 2009

The physiological role and transcriptional expression of Rhizobium etli sigma factors rpoH1 and rpoH2 are reported in this work. Both rpoH1 and rpoH2 were able to complement the temperature-sensitive phenotype of an Escherichia coli rpoH mutant. The R. etli rpoH1 mutant was sensitive to heat shock, sodium hypochlorite and hydrogen peroxide, whereas the rpoH2 mutant was sensitive to NaCl and sucrose. The rpoH2 rpoH1 double mutant had increased sensitivity to heat shock and oxidative stress when compared with the rpoH1 single mutant. This suggests that in R. etli, RpoH1 is the main heat-shock sigma factor, but a more complete protective response could be achieved with the participation of RpoH2. Conversely, RpoH2 is involved in osmotic tolerance. In symbiosis with bean plants, the R. etli rpoH1 and rpoH2 rpoH1 mutants still elicited nodule formation, but exhibited reduced nitrogenase activity and bacterial viability in early and late symbiosis compared with nodules produced by rpoH2 mutants and wild-type strains. In addition, nodules formed by R. etli rpoH1 and rpoH2 rpoH1 mutants showed premature senescence. It was also determined that fixNf and fixKf expression was affected in rpoH1 mutants. Both rpoH genes were induced under microaerobic conditions and in the stationary growth phase, but not in response to heat shock. Analysis of the upstream region of rpoH1 revealed a sigma70 and a probable sigmaE promoter, whereas in rpoH2, one probable sigmaE-dependent promoter was detected. In conclusion, the two RpoH proteins operate under different stress conditions, RpoH1 in heat-shock and oxidative responses, and RpoH2 in osmotic tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.021428-0DOI Listing

Publication Analysis

Top Keywords

etli rpoh1
20
rpoh1 rpoh2
20
rpoh1
14
rpoh2
12
heat shock
12
rpoh2 rpoh1
12
rpoh1 mutants
12
rhizobium etli
8
sigma factors
8
mutant sensitive
8

Similar Publications

The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses.

Microbiology (Reading)

February 2009

Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México.

The physiological role and transcriptional expression of Rhizobium etli sigma factors rpoH1 and rpoH2 are reported in this work. Both rpoH1 and rpoH2 were able to complement the temperature-sensitive phenotype of an Escherichia coli rpoH mutant. The R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!