Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus.

Proc Natl Acad Sci U S A

Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.

Published: February 2009

The histone H3 demethylase Not dead yet-1 (Ndy1/KDM2B) is a physiological inhibitor of senescence. Here, we show that Ndy1 is down-regulated during senescence in mouse embryonic fibroblasts (MEFs) and that it represses the Ink4a/Arf locus. Ndy1 counteracts the senescence-associated down-regulation of Ezh2, a component of polycomb-repressive complex (PRC) 2, via a JmjC domain-dependent process leading to the global and Ink4a/Arf locus-specific up-regulation of histone H3K27 trimethylation. The latter promotes the Ink4a/Arf locus-specific binding of Bmi1, a component of PRC1. Ndy1, which interacts with Ezh2, also binds the Ink4a/Arf locus and demethylates the locus-associated histone H3K36me2 and histone H3K4me3. The combination of histone modifications driven by Ndy1 interferes with the binding of RNA Polymerase II, resulting in the transcriptional silencing of the Ink4a/Arf locus and contributing to the Ndy1 immortalization phenotype. Other studies show that, in addition to inhibiting replicative senescence, Ndy1 inhibits Ras oncogene-induced senescence via a similar molecular mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650317PMC
http://dx.doi.org/10.1073/pnas.0813139106DOI Listing

Publication Analysis

Top Keywords

ink4a/arf locus
16
mouse embryonic
8
embryonic fibroblasts
8
senescence ndy1
8
ink4a/arf locus-specific
8
ink4a/arf
6
ndy1
6
histone
5
ndy1/kdm2b immortalizes
4
immortalizes mouse
4

Similar Publications

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF

Cell lines derived from fish tissues are resistant to premature senescence under typical culture conditions. Previously, we demonstrated that fish genomes do not have a p16/Arf locus and that the absence of this locus underlies the lack of senescence in cultured fish cells. However, other factors may also contribute to this resistance.

View Article and Find Full Text PDF

Isolation of circulating endothelial cells provides tool to determine endothelial cell senescence in blood samples.

Sci Rep

February 2024

Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.

Circulating endothelial cells (CEC) are arising as biomarkers for vascular diseases. However, whether they can be utilized as markers of endothelial cell (EC) senescence in vivo remains unknown. Here, we present a protocol to isolate circulating endothelial cells for a characterization of their senescent signature.

View Article and Find Full Text PDF

Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by ) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!