Removal of phosphorus from livestock effluents.

J Environ Qual

USDA-ARS Coastal Plains Soil, Water and Plant Research Center, 2611 W. Lucas St., Florence, SC 29501-1242, USA.

Published: April 2009

For removal of phosphorus (P) from swine liquid manure before land application, we developed a treatment process that produces low P effluents and a valuable P by-product with minimal chemical addition and ammonia losses. The new wastewater process included two sequential steps: (i) biological nitrification and (ii) increasing the pH of the nitrified wastewater to precipitate P. We hypothesized that by reduction of inorganic buffers (NH(4)(+) and carbonate alkalinity) via nitrification, P could be selectively removed by subsequent hydrated lime [Ca(OH)(2)] addition. The objective of the study was to assess if this new treatment could consistently reduce inorganic buffer capacity with varied initial concentrations of N (100-723 mg NH(4)(+) L(-1)), P (26-85 mg TP L(-1)), and alkalinity (953-3063 mg CaCO(3) L(-1)), and then efficiently remove P from swine lagoon liquid. The process was tested with surface lagoon liquids from 10 typical swine farms in North Carolina. Each lagoon liquid received treatment in a nitrification bioreactor, followed by chemical treatment with Ca(OH)(2) at Ca rates of 0, 2, 4, 6, 8, 10, and 12 mmol L(-1) to precipitate P. This configuration was compared with a control that received the same Ca rates but without the nitrification pretreatment. The new process significantly reduced >90% the inorganic buffers concentrations compared with the control and prevented ammonia losses. Subsequent lime addition resulted in efficient pH increase to > or = 9.5 for optimum P precipitation in the nitrified liquid and significant reduction of effluent total P concentration versus the control. With this new process, the total P concentration in treated liquid effluent can be adjusted for on-farm use with up to >90% of P removal. The recovered solid Ca phosphate material can be easily exported from the farm and reused as P fertilizer. Therefore, the new process can be used to reduce the P content in livestock effluents to levels that would diminish problems of excess P accumulation in waste-amended soils.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2007.0641DOI Listing

Publication Analysis

Top Keywords

removal phosphorus
8
livestock effluents
8
ammonia losses
8
inorganic buffers
8
lagoon liquid
8
compared control
8
total concentration
8
process
6
liquid
5
phosphorus livestock
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!