The high N inputs to agricultural systems in many regions in 27 member states of the European Union (EU-27) result in N leaching to groundwater and surface water and emissions of ammonia (NH(3)), nitrous oxide (N(2)O), nitric oxide (NO), and dinitrogen (N(2)) to the atmosphere. Measures taken to decreasing these emissions often focus at one specific pollutant, but may have both antagonistic and synergistic effects on other N emissions. The model MITERRA-EUROPE was developed to assess the effects and interactions of policies and measures in agriculture on N losses and P balances at a regional level in EU-27. MITERRA-EUROPE is partly based on the existing models CAPRI and GAINS, supplemented with a N leaching module and a module with sets of measures. Calculations for the year 2000 show that denitrification is the largest N loss pathway in European agriculture (on average 44 kg N ha(-1) agricultural land), followed by NH(3) volatilization (17 kg N ha(-1)), N leaching (16 kg N ha(-1)) and emissions of N(2)O (2 kg N ha(-1)) and NO(X) (2 kg N ha(-1)). However, losses between regions in the EU-27 vary strongly. Some of the measures implemented to abate NH(3) emission may increase N(2)O emissions and N leaching. Balanced N fertilization has the potential of creating synergistic effects by simultaneously decreasing N leaching and NH(3) and N(2)O emissions. MITERRA-EUROPE is the first model that quantitatively assesses the possible synergistic and antagonistic effects of N emission abatement measures in a uniform way in EU-27.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2008.0108DOI Listing

Publication Analysis

Top Keywords

eu-27 miterra-europe
8
synergistic effects
8
n2o emissions
8
emissions
6
eu-27
5
leaching
5
measures
5
ha-1
5
integrated assessment
4
assessment nitrogen
4

Similar Publications

Animal manure contributes considerably to ammonia (NH) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH, nitrous oxide (NO) and methane (CH) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model.

View Article and Find Full Text PDF

The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008.

Sci Total Environ

January 2014

Alterra, part of Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands. Electronic address:

A series of environmental policies have been implemented in the European Union (EU) to decrease nitrogen (N) emissions from agriculture. The Nitrates Directive (ND) is one of the main policies; it aims to reduce nitrate leaching from agriculture through a number of measures. A study was carried out to quantify the effects of the ND in the EU-27 on the leaching and runoff of nitrate (NO3(-)) to groundwater and surface waters, and on the emissions of ammonia (NH3), nitrous oxide (N2O), nitrogen oxides (NO(x)) and dinitrogen (N2) to the atmosphere.

View Article and Find Full Text PDF

The high N inputs to agricultural systems in many regions in 27 member states of the European Union (EU-27) result in N leaching to groundwater and surface water and emissions of ammonia (NH(3)), nitrous oxide (N(2)O), nitric oxide (NO), and dinitrogen (N(2)) to the atmosphere. Measures taken to decreasing these emissions often focus at one specific pollutant, but may have both antagonistic and synergistic effects on other N emissions. The model MITERRA-EUROPE was developed to assess the effects and interactions of policies and measures in agriculture on N losses and P balances at a regional level in EU-27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!