The microbial community structure of cork with marked musty-earthy aromas was analyzed using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Cork stoppers and discs were used for DNA extraction and were analyzed by using selective primers for bacteria and fungi. Stoppers clearly differed from discs harboring a different fungal community. Moreover, musty-earthy samples of both types were shown to have a specific microbiota. The fungi Penicillium glabrum and Neurospora spp. were present in all samples and were assumed to make only a small contribution to off-odor development. In contrast, Penicillium islandicum and Penicillium variabile were found almost exclusively in 2,4,6-trichloroanisole (TCA) tainted discs. Conversely, Rhodotorula minuta and Rhodotorula sloofiae were most common in cork stoppers, where only small amounts of TCA were detected. Alpha- and gammaproteobacteria were the most commonly found bacteria in either control or tainted cork stoppers. Specific Pseudomonas and Actinobacteria were detected in stoppers with low amounts of TCA and 2-methoxy-3,5-dimethylpyrazine. These results are discussed in terms of biological degradation of taint compounds by specific microorganisms. Reliable and straightforward microbial identification methods based on a molecular approach provided useful data to determine and evaluate the risk of taint formation in cork.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663217PMC
http://dx.doi.org/10.1128/AEM.02758-08DOI Listing

Publication Analysis

Top Keywords

cork stoppers
12
gradient gel
8
gel electrophoresis
8
amounts tca
8
cork
5
stoppers
5
molecular fingerprinting
4
fingerprinting pcr-denaturing
4
pcr-denaturing gradient
4
electrophoresis reveals
4

Similar Publications

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

The development of sustainable materials from the valorization of waste is a good alternative to reducing the negative environmental impact of plastic packaging. The objectives of this study were to develop and characterize pectin-based composite films incorporated with cork or cork with either coffee grounds or walnut shells, as well as to test the films' genotoxicity, antioxidant properties, and biodegradation capacity in soil and seawater. The addition of cork, coffee grounds, or walnut shells modified the films' characteristics.

View Article and Find Full Text PDF

Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy absorption, and good thermal and acoustic insulators, cork composites find room for application in demanding industries such as automotive, construction, and aerospace.

View Article and Find Full Text PDF

A Syrah red wine ageing experiment was set up during 24-months and the influence of four micro-agglomerated corks were investigated. Specific phenolic ageing markers were selected and hemi-synthesized: vitisin B, malvidin-ethyl-catechin, and epicatechin-sulfonate. A targeted quantification method of these markers was then developed and validated by using ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-QqQ-MS) operating in MRM (Multiple Reaction Monitoring).

View Article and Find Full Text PDF

Cork taint provides off-odors and changes negatively wine composition. In fact, it is one of the most important causes of discarding bottled wine. 2,4,6-Trichloroanisole (TCA) is the most known molecule responsible of that problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!