The atrazine chlorohydrolase AtzA has evolved within the past 50 years to catalyze the hydrolytic dechlorination of the herbicide atrazine. It is of wide research interest for two reasons: first, catalytic improvement of the enzyme would facilitate its application in bioremediation, and second, because of its recent evolution, it presents a rare opportunity to examine the early stages in the acquisition of new catalytic activities. Using a structural model of the AtzA-atrazine complex, a region of the substrate-binding pocket was targeted for combinatorial randomization. Identification of improved variants through this process informed the construction of a variant AtzA enzyme with 20-fold improvement in its k(cat)/K(m) value compared with that of the wild-type enzyme. The reduction in K(m) observed in the AtzA variants has allowed the full kinetic profile for the AtzA-catalyzed dechlorination of atrazine to be determined for the first time, revealing the hitherto-unreported substrate cooperativity in AtzA. Since substrate cooperativity is common among deaminases, which are the closest structural homologs of AtzA, it is possible that this phenomenon is a remnant of the catalytic activity of the evolutionary progenitor of AtzA. A catalytic mechanism that suggests a plausible mechanistic route for the evolution of dechlorinase activity in AtzA from an ancestral deaminase is proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663207 | PMC |
http://dx.doi.org/10.1128/AEM.02634-08 | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFSmall
January 2025
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.
View Article and Find Full Text PDFSmall
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!