A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyaluronidase activity of human Hyal1 requires active site acidic and tyrosine residues. | LitMetric

Hyaluronidases are a family of endolytic glycoside hydrolases that cleave the beta1-4 linkage between N-acetylglucosamine and glucuronic acid in hyaluronan polymers via a substrate-assisted mechanism. In humans, turnover of hyaluronan by this enzyme family is critical for normal extracellular matrix remodeling. However, elevated expression of the Hyal1 isozyme accelerates tumor growth and metastatic progression. In this study, we used structural information, site-directed mutagenesis, and steady state enzyme kinetics to probe molecular determinants of human Hyal1 function. Mutagenesis of active site residues Glu(131) and Tyr(247) to Gln and Phe, respectively, eliminated activity at all hyaluronan concentrations (to 125 microm or 2.5 mg/ml). Conservative mutagenesis of Asp(129) and Tyr(202) significantly impaired catalysis by increases of 5- and 10-fold in apparent K(m) and reductions in V(max) of 95 and 50%, respectively. Tyr(247) and Asp(129) are required for stabilization of the catalytic nucleophile, which arises as a resonance intermediate of N-acetylglucosamine on the substrate. Glu(131) is a likely proton donor for the hydroxyl leaving group. Tyr(202) is a substrate binding determinant. General disulfide reduction had no effect on activity in solution, but enzymatic deglycosylation reduced Hyal1 activity in a time-dependent fashion. Mutagenesis identified Asn(350) glycosylation as the requisite modification. Deletion of the C-terminal epidermal growth factor-like domain, in which Asn(350) is located, also eliminated activity, irrespective of glycosylation. Collectively, these studies define key components of Hyal1 active site catalysis, and structural factors critical for stability. Such detailed understanding will allow rational design of enzyme modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666596PMC
http://dx.doi.org/10.1074/jbc.M900210200DOI Listing

Publication Analysis

Top Keywords

active site
12
human hyal1
8
eliminated activity
8
hyal1
5
hyaluronidase activity
4
activity human
4
hyal1 requires
4
requires active
4
site acidic
4
acidic tyrosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!