We investigated the role of LMNA in adipose tissue by developing a novel mouse model of lipodystrophy. Transgenic mice were generated that express the LMNA mutation that causes familial partial lipodystrophy of the Dunnigan type (FPLD2). The phenotype observed in FPLD-transgenic mice resembles many of the features of human FPLD2, including lack of fat accumulation, insulin resistance, and enlarged, fatty liver. Similar to the human disease, FPLD-transgenic mice appear to develop normally, but after several weeks they are unable to accumulate fat to the same extent as their wild-type littermates. One poorly understood aspect of lipodystrophies is the mechanism of fat loss. To this end, we have examined the effects of the FPLD2 mutation on fat cell function. Contrary to the current literature, which suggests FPLD2 results in a loss of fat, we found that the key mechanism contributing to the lack of fat accumulation involves not a loss, but an apparent inability of the adipose tissue to renew itself. Specifically, preadipocytes are unable to differentiate into mature and fully functional adipocytes. These findings provide insights not only for the treatment of lipodystrophies, but also for the study of adipogenesis, obesity, and insulin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681389 | PMC |
http://dx.doi.org/10.1194/jlr.M800491-JLR200 | DOI Listing |
Cureus
November 2024
Physical Medicine and Rehabilitation, St. John's National Academy of Health Sciences, Bengaluru, IND.
Emery-Dreifuss Muscular Dystrophy (EDMD) is a rare genetic disorder characterized by muscle weakness, joint contractures, and cardiac dysfunction. Within this spectrum, EDMD Type 2, attributed to a heterozygous missense variant in exon 9 of the LMNA gene, presents a distinctive clinical profile. This case report details the presentation and management of a teenage girl displaying neck, trunk, upper and lower limb weakness, Achilles tendon contracture, and lordosis.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America.
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Faculté de Médecine Paris Saclay, INSERM U1193, 94275 Le Kremlin-Bicêtre, France.
Nat Commun
November 2024
Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.
View Article and Find Full Text PDFbioRxiv
October 2024
Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
Metastasis is the leading cause of cancer-related deaths, yet its regulatory mechanisms are not fully understood. Small-cell lung cancer (SCLC) is the most metastatic form of lung cancer, with most patients presenting with widespread disease, making it an ideal model for studying metastasis. However, the lack of suitable preclinical models has limited such studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!