AI Article Synopsis

  • The study evaluated Strychnos nux-vomica, a plant used in traditional medicine, for its antioxidant properties by analyzing both non-enzymatic antioxidants like ascorbic acid and enzymes such as superoxide dismutase.
  • The leaf samples showed a significant presence of both types of antioxidants, indicating the plant's potential medicinal value.
  • Further research is necessary to confirm these findings through radical scavenging abilities, which is currently in progress.

Article Abstract

In the present investigation, Strychnos nux-vomica, an important plant used in traditional medicine, was evaluated for its antioxidant potential. The antioxidant potentials were examined in terms of non-enzymatic antioxidant molecules and activities of antioxidant enzymes. The non-enzymatic antioxidant molecules studied were ascorbic acid, alpha-tocopherol and reduced glutathione. The estimated antioxidant enzymes were superoxide dismutase, ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase. The analyses were carried out in the field-collected leaf samples. It was found that plant contained a significant quantity of non-enzymatic and enzymatic antioxidants in the leaves. These findings have high significance in the pharmacological industry; however, a detailed investigation is needed to confirm this conclusion, by radical scavenging ability, which is underway in our laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2008.09.012DOI Listing

Publication Analysis

Top Keywords

non-enzymatic enzymatic
8
strychnos nux-vomica
8
non-enzymatic antioxidant
8
antioxidant molecules
8
antioxidant enzymes
8
antioxidant
7
non-enzymatic
4
enzymatic antioxidant
4
antioxidant variations
4
variations tender
4

Similar Publications

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.

View Article and Find Full Text PDF

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!