A new equation is derived from a combination of the BET (Brunauer, Emmett, Teller) and Freundlich isotherms fitted for liquid phase adsorption data on activated carbons. This equation, depending on the Freundlich parameters and the equilibrium adsorption-desorption constant can be used for assessment of the surface area occupied by the solute molecules on a surface in a liquid phase system under some conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.12.079DOI Listing

Publication Analysis

Top Keywords

liquid phase
12
assessment surface
8
surface area
8
area occupied
8
phase adsorption
8
adsorption data
8
combination bet
8
occupied molecules
4
molecules activated
4
activated carbon
4

Similar Publications

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

Metal-organic frameworks for the separation of xylene isomers.

Chem Soc Rev

January 2025

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Xylene isomers, including -xylene (X), -xylene (X), -xylene (X), and ethyl benzene (EB), are important raw materials in industry. The separation of xylene isomers has been recognized as one of the "seven chemical separations to change the world". However, because of their similar physicochemical properties, totally separating four xylene isomers has remained a big challenge until now.

View Article and Find Full Text PDF

Emerging 0D Hybrid Metal Halide Luminescent Glasses.

Adv Mater

January 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

0D hybrid metal halide (HMH) luminescent glasses have garnered significant attentions for its chemical diversity in optoelectronic applications and it also retains the skeleton connectivity and coordination mode of the crystalline counterparts while exhibiting various physics/chemistry characteristics distinct from the crystalline states. However, understanding of the glass-forming ability and the specific structural origins underpinning the luminescent properties of 0D HMH glasses remains elusive. In this review, it is started from the solid-liquid phase transition and thermodynamic analysis of 0D HMHs formed through melt-quenching, and summarize the current compounds capable of stably forming glassy phases via chemical structural design.

View Article and Find Full Text PDF

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!