Superhydrophobic surfaces with water contact angle higher than 150 degrees generated a lot of interest both in academia and in industry because of the self-cleaning properties. Optically transparent superhydrophobic silica films were synthesized at room temperature (27 degrees C) using sol-gel process by a simple dip coating technique. The molar ratio of MTMS:MeOH:H(2)O (5 M NH(4)OH) was kept constant at 1:10.56:4.16, respectively. Emphasis is given to the effect of the surface modifying agents on the hydrophobic behavior of the films. Methyl groups were introduced in the silica film by post-synthesis grafting from two solutions using trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents in hexane solvent, individually. The percentage of silylating agents and silylation period was varied from 2.5 to 7.5% and 1 to 3 h, respectively. The TMCS modified films exhibited a very high water contact angle (166+/-2 degrees) in comparison to the HMDZ (138+/-2 degrees) modified films, indicating the water repellent behavior of the surface. When the TMCS and HMDZ modified films were heated at temperatures higher than 350 degrees C and 335 degrees C, respectively, the films became superhydrophilic; the contact angle for water on the films was smaller than 5 degrees. Further, the humidity study was carried out at a relative humidity of 85% at 30 degrees C temperature over 30 days. The films have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), % optical transmission, humidity tests and contact angle (CA) measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2009.01.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!