Novel classes of dimer antitumour drug candidates.

Curr Pharm Des

Department of Applied Biology and Chemical Technology and Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong Polytechnic University, Hong Kong SAR.

Published: May 2009

Polyvalency in the biological world is defined as the simultaneous binding of multiple ligands to one receptor. Polyvalency can increase the affinity of the polyvalent ligand by 100-1000 fold over the monovalent ligand. Such phenomenon has been employed to design polyvalent toxin inhibitors. Bivalency is a similar approach where two ligands are joined together with a linker to form a homo- or hetero-dimer with an increase in affinity by up to several hundred fold over the monovalent ligand. This review will summarize the recent advancement in designing bivalent inhibitors to be used as antitumour agents. Some dimers (e.g. artemisinin homo-dimer) simply increase the affinity of the monovalent ligands without detailed knowledge of the target. Other dimers are designed with well-characterized targets, for example, jesterone dimer (inhibiting Rel/NF-kappaB) and 3,3'-diindolymethane and their derivatives (inhibiting Akt and NFkappaB). Some dimers are designed based on the high definition structure between ligand and target (e.g. benzodiazepine and daunorubicin interacting with DNA). Heterodimers have also been produced by combining either two different antitumor drugs (e.g. cis-platin/acridine or cis-platin/naphthalimide) or combining one antitumor candidate (artemisinin) with a molecule which can increase the efficacy of the former (transferrin receptor). Finally we will discuss the design of bivalent inhibitors of the P-glycoprotein (ABCB1; MDR or P-gp) to overcome the problem of antitumor resistance.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161209787315576DOI Listing

Publication Analysis

Top Keywords

increase affinity
12
fold monovalent
8
monovalent ligand
8
bivalent inhibitors
8
dimers designed
8
combining antitumor
8
novel classes
4
classes dimer
4
dimer antitumour
4
antitumour drug
4

Similar Publications

Liver damage is one of the most severe side effects of valproic acid (VPA) therapy. Research indicates that PPAR-α prevents Wnt3a/β-catenin-induced PGC-1α dysregulation, which is linked to liver injury. Although PPAR-α activation has hepatoprotective effects, its role in preventing VPA-induced liver injury remains unclear.

View Article and Find Full Text PDF

Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance.

Plant Physiol Biochem

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China. Electronic address:

The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E.

View Article and Find Full Text PDF

Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9.

Redox Biol

January 2025

Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Caffeine (CAFF) is abundant in black coffee. As one of the most widely consumed beverages globally, coffee has been the focus of increasing clinical and basic research, particularly regarding its benefits in alleviating metabolic dysfunction-associated steatotic liver disease (MASLD). However, the therapeutic effects of CAFF on metabolic-associated steatohepatitis (MASH) and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!