The structure and biological aspects of peptide antibiotic microcin J25.

Curr Med Chem

Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), Chacabuco 461. San Miguel de Tucumán 4000, Argentina.

Published: March 2009

Microcin J25 (MccJ25) is a plasmid-encoded peptide of 21 L-amino acids (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G), excreted to the medium by an Escherichia coli strain. MccJ25 is active on Gram-negative bacteria related to the producer strain, including some pathogenic strains. The four-plasmid genes mcjABCD, are involved in MccJ25 production: mcjA encodes a 58-residue precursor, mcjB and mcjC codify two processing enzymes required for the in vivo synthesis of the mature peptide and mcjD encodes the immunity protein (McjD), a member of the super family of ABC transporters. Immunity is mediated by active efflux of the peptide, keeping its intracellular concentration below a critical level. YojI, a chromosomal protein with ATP-binding-cassette-type exporter homology, is also able to export MccJ25. The E. coli outer membrane protein, TolC, is necessary for MccJ25 secretion mediated by either McjD or YojI. The uptake of MccJ25 is dependent on the outer-membrane receptor FhuA and the four inner-membrane proteins TonB, ExbD, ExbB and SbmA. At least two mechanisms described the action of MccJ25 on the target cells: (1) inhibition of the RNA-polymerase (RNAP) activity by obstructing the secondary channel, and consequently, preventing the access of the substrates to its active sites; and (2) operating on the cell membrane, MccJ25 disrupts the electric potential inhibiting the oxygen consumption in Salmonella enterica. MccJ25 also inhibits oxygen consumption and the respiratory chain enzymes in E. coli throughout the increasing of ROS concentration. Nevertheless the exact mechanism of this phenomenon must be elucidated. The MccJ25 exhibits a prolonged antimicrobial activity in a mouse infection model, suggesting a noteworthy potential for therapeutic uses.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986709787458461DOI Listing

Publication Analysis

Top Keywords

mccj25
10
microcin j25
8
oxygen consumption
8
structure biological
4
biological aspects
4
peptide
4
aspects peptide
4
peptide antibiotic
4
antibiotic microcin
4
j25 microcin
4

Similar Publications

Plasmidome of Salmonella enterica serovar Infantis recovered from surface waters in a major agricultural region for leafy greens in California.

PLoS One

January 2025

Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America.

Non-typhoidal Salmonella enterica is a leading cause of gastrointestinal illnesses in the United States. Among the 2,600 different S. enterica serovars, Infantis has been significantly linked to human illnesses and is frequently recovered from broilers and chicken parts in the U.

View Article and Find Full Text PDF

Screening and Genomic Profiling of Antimicrobial Bacteria Sourced from Poultry Slaughterhouse Effluents: Bacteriocin Production and Safety Evaluation.

Genes (Basel)

December 2024

Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.

Antimicrobial-resistant (AMR) pathogens represent a serious threat to public health, particularly in food production systems where antibiotic use remains widespread. As a result, alternative antimicrobial treatments to antibiotics are essential for effectively managing bacterial infections. This study aimed to identify and characterize novel antimicrobial peptides produced by bacteria, known as bacteriocins, as well as to recognize safe bacteriocin-producing strains, sourced from poultry slaughterhouse effluents.

View Article and Find Full Text PDF

Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide-conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems.

View Article and Find Full Text PDF

Interspecies interactions involving direct competition bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific and strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!