The epoxyquinones (e.g., 24), readily assembled in one step from the quinols (e.g., 27) by a simplified version of the Dowd oxidation, are shown to undergo rearrangement to pyranonaphthoquinones (e.g., 28) and their ring contracted homologues (e.g., 29) on flash vacuum pyrolysis at 450 degrees C and 0.01 Torr. The rearrangement has been demonstrated to be useful for a regiospecific synthesis of lambertellin (3). Similarly, the masked aziridinocyclopentanone 9 rearranges to 2-pyridone (37).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo801961wDOI Listing

Publication Analysis

Top Keywords

synthesis rearrangement
4
rearrangement quinone-embedded
4
quinone-embedded epoxycyclopentenones
4
epoxycyclopentenones avenue
4
avenue pyranonaphthoquinones
4
pyranonaphthoquinones indenopyranones
4
indenopyranones epoxyquinones
4
epoxyquinones assembled
4
assembled step
4
step quinols
4

Similar Publications

The proteome is a terminal electron acceptor.

Proc Natl Acad Sci U S A

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.

View Article and Find Full Text PDF

Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery.

View Article and Find Full Text PDF

Re-arranging the Cis-regulatory Modules of Hox Complex in Drosophila via FLP-FRT and CRISPR/Cas9.

Methods Mol Biol

January 2025

Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA.

FLP-FRT, a well-established technique for genome manipulation, and the revolutionary CRISPR/Cas9, known for its targeted indels, are combined in a novel approach. This unique method is applied to the Hox genes in the Drosophila melanogaster bithorax complex, which are closely located to the cis-regulatory modules that define their spatial-temporal regulation. The number and position of these genes are directly correlated to their expression pattern.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

RET (Rearranged during transfection) kinase is a validated target for non-small cell lung cancer (NSCLC). In 2020, two selective RET inhibitors, selpercatinib and pralsetinib were approved by the US FDA. However, high treatment costs and clinically acquired resistance (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!