Microcapsules were produced by complex coacervation with a gelatin-gum acacia wall and medium-chain-triglyceride core. Dry capsules were partially rehydrated and then loaded with model aroma compounds covering a range of volatility, hydrophobicity, and molecular structure. An experimental design was prepared to evaluate the effects of cross-linking, wall/core ratio, and volatile load level on aroma release from capsules in a hot, aqueous environment. The real-time release on rehydration was measured by monitoring the headspace of a vessel containing the capsules to proton transfer reaction mass spectrometry (PTR-MS). Data collected showed no effects of cross-linking or wall/core ratio on volatile release in hot water for any of the volatiles studied. When comparing real-time release of the prepared coacervates to a spray-dried equivalent, there was no difference in the release from hot water but the release was slower when coacervates were added to ambient-temperature water. We found volatile release to be primarily determined by compound partition coefficients (oil/water and water/air) and temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf802472q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!