Steady-state and time-resolved studies of the fluorescence of four aromatic unconjugated pterins (pterin (Ptr), 6-(hydroxymethyl)pterin (Hmp), 6-methylpterin (Mep), and 6,7-dimethylpterin (Dmp)) in aqueous solutions in the presence of different nucleotides (2'-deoxyguanosine 5'-monophosphate (dGMP), 2'-deoxyadenosine 5'-monophosphate (dAMP), and 2'-deoxycytosine 5'-monophosphate (dCMP)) have been performed using the single-photon counting technique. The singlet excited states of acid forms of pterins are deactivated by purine nucleotides (dGMP and dAMP) via a combination of dynamic and static processes. The efficiency of the dynamic quenching is high, independently of the nature of the purine base of the nucleotide and of the chemical structure of the substituents linked to the pterin moiety. Analysis of the static quenching indicates that ground-state association between pterins and purine nucleotides takes place, but the formation of the corresponding complexes is significant only at relatively high reactant concentrations. The quenching of the fluorescence of acid forms of pterin derivatives by dCMP, a pyrimidine nucleotide, is slightly less efficient than the quenching by purine nucleotides and is purely dynamic. In alkaline media, the fluorescence quenching is much less efficient than in acidic media, the deactivation by purine nucleotides being purely dynamic, whereas quenching by dCMP is negligible. Possible mechanisms for the quenching of fluorescence of pterin derivatives by the different nucleotides are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp8101496 | DOI Listing |
Nucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFMikrobiyol Bul
January 2025
Kocaeli Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Kocaeli.
Son yıllarda pandemi nedeniyle virüslerin tanı ve tedavisine yönelik terapötik yöntemlerin geliştirilmesi ve antivirallerin test edilmesi amacıyla çok sayıda in vitro çalışma yapılmaktadır. Literatürde SARS-CoV-2'nin modellenebilmesi için HCoV-229E'nin kullanımının güvenli ve yeterli olup olmadığını inceleyen çalışmalar sınırlıdır. Bu sebeple bu çalışmada, BSL-2 şartlarında gerçekleştirilebilen HCoV-229E kültürü ve kantitasyon çalışmalarının, BSL-3 şartları gerektiren SARS-CoV-2 deneylerinde bir ön çalışma modeli olup olamayacağının antiviral etkinlik analizleri üzerinden araştırılması amaçlanmıştır.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFProtein Sci
February 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.
View Article and Find Full Text PDFPLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!