Candida species are the most important fungal pathogens in humans and cause a variety of superficial and systemic diseases. Biofilm formation is a major virulence attribute contributing to Candida pathogenicity. Although the concentration and distribution of nutrients as well as antifungals across the biofilm thickness play a pivotal role in the development and persistence of Candida biofilms, only limited information is available on the latter aspects of Candida biofilms. Therefore, we attempted to characterize the diffusion coefficient (De) of common dietary sugars such as glucose, galactose, and sucrose in Candida albicans biofilms using horizontal attenuated total reflection-Fourier transform infrared spectroscopy (HATR-FTIR). Artificial Candida biofilms were formed using agarose polymers. De of three sugars tested, glucose, galactose, and sucrose in this artificial Candida biofilm model was found to be 4.08E-06 +/- 3.63E-08, 4.08E-06 +/- 3.70E-08, and 5.38E-06 +/- 4.52E-08 cm(2) s(-1), respectively. We demonstrate here the utility of HATR-FTIR for the determination of diffusion of solutes such as dietary sugars across Candida biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11046-009-9184-x | DOI Listing |
mBio
January 2025
University of Angers, Brest University, IRF, SFR ICAT, Angers, France.
The emerging fungal pathogen is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R.
View Article and Find Full Text PDFCandida auris is an emerging, multidrug-resistant fungus that poses a threat in health care settings because of its persistence on surfaces and ability to cause severe infections, particularly in immunocompromised patients. First identified in Japan in 2009, C auris has since spread globally, leading to numerous outbreaks. Its unique virulence factors, such as biofilm formation and immune evasion, contribute to its resilience and resistance to eradication.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed to be University), Kolhapur- 416-003, Maharashtra, India.
Increased virulence and drug resistance in species of resulted in reduced disease control and further demand the development of potent antifungal drugs. The repurposing of non-antifungal drugs and combination therapy has become an attractive alternative to counter the emerging drug resistance and toxicity of existing antifungal drugs against and non-albicans species. This study aimed to accelerate antifungal drug development process by drug repurposing approach.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Biology, Science Faculty, Atatürk University, Erzurum, Türkiye.
Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.
Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!