The denatured monomers of an integral membrane protein OmpF porin were refolded and reassembled into its sodium dodecyl sulfate-resistant trimer in mixtures of n-octyl beta-D: -glucopyranoside and lipids. Effective reassembly was observed with a yield of 60-70% when the denatured monomers (0.1 mg/mL) were solubilized at 25 degrees C for 24 h in a refolding medium (pH 6.9) containing 7 mg/mL n-octyl beta-D: -glucopyranoside, 1 mg/mL sodium dodecyl sulfate and 2-2.5 mg/mL soybean asolectin. The reassembled species was characterized in the presence of sodium dodecyl sulfate by physicochemical methods. Low-angle laser light scattering measurements revealed that the molecular weight of the reassembled species is 115,000 +/- 3,500 which corresponds to that of the trimer of this protein. Circular dichroism spectra suggested that the reassembled species is composed of the same beta-structure as the native one. Synchrotron radiation small-angle X-ray scattering measurements confirmed that the reassembled species is a trimer that has the same compactness as the native one.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-009-9165-4DOI Listing

Publication Analysis

Top Keywords

reassembled species
16
n-octyl beta-d
12
sodium dodecyl
12
membrane protein
8
protein ompf
8
ompf porin
8
denatured monomers
8
beta-d -glucopyranoside
8
dodecyl sulfate
8
scattering measurements
8

Similar Publications

Shifting community assembly dynamics are an underappreciated mechanism by which warming will alter plant community composition. Germination timing (which can determine the order in which seedlings emerge within a community) will likely shift unevenly across species in response to warming. In seasonal environments where communities reassemble at the beginning of each growing season, changes in germination timing could lead to changes in seasonal priority effects, and ultimately community composition.

View Article and Find Full Text PDF

A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).

View Article and Find Full Text PDF

The translation of nucleotide sequences into amino acid sequences, governed by the genetic code, is one of the most conserved features of molecular biology. The standard genetic code, which uses 61 sense codons to encode one of the 20 standard amino acids and 3 stop codons (UAA, UAG, and UGA) to terminate translation, is used by most extant organisms. The protistan phylum Ciliophora (the 'ciliates') are the most prominent exception to this norm, exhibiting the grfeatest diversity of nuclear genetic code variants and evidence of repeated changes in the code.

View Article and Find Full Text PDF

Assessing plant-pollinator relationships often employs a snapshot approach to describe the complexity and dynamic involving species interactions. However, this framework overlooks the nuanced changes in species composition, their interactions, and the underlying drivers of such variations. This is particularly evident on less explored temporal scales, such as the dynamic decision-making processes occurring within hours throughout the day.

View Article and Find Full Text PDF

The core-shell structure often exhibits unique properties, resulting in superior physical and chemical performance distinct from individual component in the field of photocatalysis. However, traditional prepared methods such as template synthesis and layer-by-layer self-assembly are relatively complex. Therefore, it is necessary to explore an efficient and expedient approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!