Mercury toxicity and the mitigating role of selenium.

Ecohealth

Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Biomedical Sciences Building, Suite 222, 651 Ilalo Street, Honolulu, 96813 HI, USA.

Published: December 2008

AI Article Synopsis

Article Abstract

Mercury is a well-known environmental toxicant, particularly in its most common organic form, methylmercury. Consumption of fish and shellfish that contain methylmercury is a dominant source of mercury exposure in humans and piscivorous wildlife. Considerable efforts have focused on assessment of mercury and its attendant risks in the environment and food sources, including the studies reported in this issue. However, studies of mercury intoxication have frequently failed to consider the protective effects of the essential trace element, selenium. Mercury binds to selenium with extraordinarily high affinity, and high maternal exposures inhibit selenium-dependent enzyme activities in fetal brains. However, increased maternal dietary selenium intakes preserve these enzyme activities, thereby preventing the pathological effects that would otherwise arise in their absence. Recent evidence indicates that assessments of mercury exposure and tissue levels need to consider selenium intakes and tissue distributions in order to provide meaningful risk evaluations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10393-008-0204-yDOI Listing

Publication Analysis

Top Keywords

selenium mercury
8
mercury exposure
8
enzyme activities
8
selenium intakes
8
mercury
7
selenium
5
mercury toxicity
4
toxicity mitigating
4
mitigating role
4
role selenium
4

Similar Publications

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression.

Sci Total Environ

January 2025

Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:

Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.

View Article and Find Full Text PDF

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Humans are exposed to toxic methylmercury mainly by consuming marine fish, in particular top predator species like billfishes or tunas. In seafood risk assessments, mercury is assumed to be mostly present as organic methylmercury in predatory fishes; yet high percentages of inorganic mercury were recently reported in marlins, suggesting markedly different methylmercury metabolism across species. We quantified total mercury and methylmercury concentrations in muscle of four billfish species from the Indian and the Pacific oceans to address this knowledge gap.

View Article and Find Full Text PDF

Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.

Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!