The role of binocular vision in grasping has frequently been assessed by measuring the effects on grasp kinematics of covering one eye. These studies have typically used three or fewer objects presented at three or fewer distances, raising the possibility that participants learn the properties of the stimulus set. If so, even relatively poor visual information may be sufficient to identify which object/distance configuration is presented on a given trial, in effect providing an additional source of depth information. Here we show that the availability of this uncontrolled cue leads to an underestimate of the effects of removing binocular information, and therefore to an overestimate of the effectiveness of the remaining cues. We measured the effects of removing binocular cues on visually open-loop grasps using (1) a conventional small stimulus-set, and (2) a large, pseudo-randomised stimulus set, which could not be learned. Removing binocular cues resulted in a significant change in grip aperture scaling in both conditions: peak grip apertures were larger (when reaching to small objects), and scaled less with increases in object size. However, this effect was significantly larger with the randomised stimulus set. These results confirm that binocular information makes a significant contribution to grasp planning. Moreover, they suggest that learned stimulus information can contribute to grasping in typical experiments, and so the contribution of information from binocular vision (and from other depth cues) may not have been measured accurately.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-1718-4DOI Listing

Publication Analysis

Top Keywords

binocular vision
12
stimulus set
12
removing binocular
12
role binocular
8
vision grasping
8
small stimulus-set
8
three fewer
8
effects removing
8
cues measured
8
binocular cues
8

Similar Publications

Binocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).

View Article and Find Full Text PDF
Article Synopsis
  • Accurate 3D information estimation from images is crucial for computer vision, and while binocular stereo vision is a common approach, it faces challenges with baseline distance affecting reliability.
  • This research proposes a new method that progressively increases the baseline in multiocular vision, introducing a rectification technique that significantly reduces distortion errors in the images.
  • The method enhances disparity estimation accuracy by 20% for multiocular images and demonstrates superior performance through extensive evaluations against existing methods.
View Article and Find Full Text PDF

When rendering the visual scene for near-eye head-mounted displays, accurate knowledge of the geometry of the displays, scene objects, and eyes is required for the correct generation of the binocular images. Despite possible design and calibration efforts, these quantities are subject to positional and measurement errors, resulting in some misalignment of the images projected to each eye. Previous research investigated the effects in virtual reality (VR) setups that triggered such symptoms as eye strain and nausea.

View Article and Find Full Text PDF

Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision.

View Article and Find Full Text PDF

Visual attention is intrinsically rhythmic and oscillates based on the discrete sampling of either single or multiple objects. Recently, studies have found that the early visual cortex (V1/V2) modulates attentional rhythms. Both monocular and binocular cells are present in the early visual cortex, which acts as a transfer station for transformation of the monocular visual pathway into the binocular visual pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!