For dye-sensitized solar cell (DSSC), highly ordered nanoporous TiO2 materials with crystalline frameworks were successfully synthesized from different silica templates including SBA-15, KIT-6 and MSU-H. A photoelectrode in DSSC was fabricated by adsorbing cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye (N719) onto the prepared TiO2 nanoparticles. The samples were characterized by XRD, TEM, FE-SEM, AFM and Brunauer-Emmett-Teller (BET), and FT-IR analysis. An investigation of the influence of the bonding structure of N719 dye and nanoporous TiO2 on the photovoltaic performance of DSSC revealed that the bonding structure of N719 on TiO2 films is caused by the unidentate and bidentate linkage. Based on the overall conversion efficiency (eta), fill factor (FF), open-circuit voltage (V(oc)) and short-circuit current (/sc) from the I-V curves measured, it was observed that the photoelectric performance is strongly dependent on the dispersion properties of the nanoporous TiO2 replicas from mesoporous silica templates.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2008.1199DOI Listing

Publication Analysis

Top Keywords

nanoporous tio2
16
photovoltaic performance
8
tio2 replicas
8
dye-sensitized solar
8
silica templates
8
bonding structure
8
structure n719
8
tio2
6
nanoporous
4
performance nanoporous
4

Similar Publications

Carbon-Doped TiO Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl Vapor.

Membranes (Basel)

November 2024

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

Article Synopsis
  • Researchers developed advanced nanofiltration membranes using a TiO nanofilm created through a vapor-liquid reaction on a ceramic support.
  • The process involved reacting glycerol with TiCl vapor to form hybrid films, which were then calcined to create carbon-doped titanium oxide nanofilms.
  • These membranes demonstrated high methanol permeability and effective solute rejection, making them ideal for purifying organic solvents.
View Article and Find Full Text PDF

Low-dimensional materials have demonstrated strong potential for use in diverse flexible strain sensors for wearable electronic device applications. However, the limited contact area in the sensing layer, caused by the low specific surface area of typical nanomaterials, hinders the pursuit of high-performance strain-sensor applications. Herein, we report an efficient method for synthesizing TiO2-based nanocomposite materials by directly using industrial raw materials with ultrahigh specific surface areas that can be used for strain sensors.

View Article and Find Full Text PDF

In this study, titanium oxide TiO nanoparticles were produced using the sol-gel approach of green synthesis with pectin as the reducing agent. The synthetized TiO nanoparticles with pectin were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), visible light absorption (UV-Vis) and the BET method. The structure and morphology of the TiO powder were described with SEM, revealing uniform monodisperse grains with a distribution of 80% regarding sizes < 250 nm; the resulting crystal phase of synthetized TiO was identified as an anatase and rutile phase with a crystallinity size estimated between 27 and 40 nm.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses a new method for creating ultraporous titanium dioxide thin films using plasma deposition and etching, which can be done at room or mild temperatures.
  • These films have over 85% porosity, maintain their structure even after high-temperature annealing, and exhibit unique properties like being antireflective and superhydrophilic under UV light.
  • The resulting porous films can be used as electrodes in perovskite solar cells and have potential applications in various fields such as energy storage, photonics, and controlled wetting due to their scalable and solvent-free synthesis process.
View Article and Find Full Text PDF

Synthesis of Heterostructured TiO Nanopores/Nanotubes by Anodizing at High Voltages.

Materials (Basel)

July 2024

School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi 100000, Vietnam.

This paper reports on the coating of heterostructured TiO nanopores/nanotubes on Ti substrates by anodizing at high voltages to design surfaces for biomedical implants. As the anodized voltage from 50 V to 350 V was applied, the microstructure of the coating shifted from regular TiO nanotubes to heterostructured TiO nanopores/nanotubes. In addition, the dimension of the heterostructured TiO nanopores/nanotubes was a function of voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!