Pentaerythritol tetranitrate (PETN) is an explosive chemical that has been detected in environmental media. Although previous toxicology studies have shown PETN to be relatively benign, a lack of available information concerning developmental and reproductive effects from oral PETN exposure was needed. Sprague-Dawley rats were exposed to oral daily adjusted volumetric doses of 0, 100, 500, or 1,000 mg PETN/kg body mass in a corn oil vehicle for up to 56 days. Mating, duration of gestation, body weight, feed consumption, overall condition of adults, and the number, sex, and condition of pups were recorded. Histological examinations were also performed on the ovaries, testes, and epididymides of animals from the control and the highest dose groups. Other environmental criteria, water solubility, octanol/water partition coefficient, and biodegradation rates of neat PETN were also determined. Only body weights and feed consumption were affected by treatment; however, these differences may be attributed more to volumetric adjustments of vehicle in the control and high-dose groups than to PETN toxicity. No adverse effects on development or reproduction from PETN exposure were observed. Water solubility, octanol water partition coefficient, and water suspension and biodegradation rates suggest PETN is unlikely to transport or bioaccumulate in the environment to any appreciable extent. Additionally, biotic processes are most likely faster in breaking down PETN than the abiotic processes involved in dissolving PETN in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdrb.20184 | DOI Listing |
Molecules
January 2025
Department of Law, University of Bergamo, Via Moroni 255, 24127 Bergamo, Italy.
Background: The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH.
Methods: The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation.
J Phys Chem Lett
January 2025
High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
The ability to predict the handling sensitivity of new organic energetic materials has been a longstanding goal. We report the synthesis and characterization of six new nitropicramide energetic materials with mixed functional groups that mimic known explosives such as nitroglycerin, erythritol tetranitrate (ETN), and pentaerythritol tetranitrate (PETN). The molecules have been studied theoretically using quantum molecular dynamics (QMD) simulations and density functional theory (DFT) calculations to identify the weakest bond in the reactants - the trigger-linkages - which control handling sensitivity, and to quantify their specific enthalpies of explosion.
View Article and Find Full Text PDFPathogens
November 2024
Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea.
The emergence of antibiotic-resistant () is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant , serving as the last line of defense. However, reports of colistin-resistant strains of have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens.
View Article and Find Full Text PDFJ Asian Nat Prod Res
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Compound FLZ has neuroprotective effects on Parkinson's disease (PD), while the precise mechanism remains unclear. In this study, we found that FLZ decreased PTEN/Akt activity in LPS-challenged BV2 cells. Neuroinflammatory responses suppressed by FLZ were abolished when PTEN or Src was inhibited.
View Article and Find Full Text PDFACS Sens
December 2024
York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!