Anaeromyxobacter dehalogenans strain 2CP-C reduces U(VI) and Tc(VII) to U(IV)O(2(s)) (uraninite) and Tc(IV)O(2(S)) respectively. Kinetic studies with resting cells revealed that U(VI) or Tc(VII) reduction rates using H(2) as electron donor exceeded those observed in acetate-amended incubations. The reduction of U(VI) by A. dehalogenans 2CP-C resulted in extracellular accumulation of approximately 5 nm uraninite nanoparticles in association with a lectin-binding extracellular polymeric substance (EPS). The electron donor did not affect UO(2(S)) nanoparticle size or association with EPS, but the utilization of acetate as the source of reducing equivalents resulted in distinct UO(2(S)) nanoparticle aggregates that were approximately 50 nm in diameter. In contrast, reduction of Tc(VII) by A. dehalogenans 2CP-C cell suspensions produced dense clusters of TcO(2) particles, which were localized within the cell periplasm and on the outside of the outer membrane. In addition to direct reduction, A. dehalogenans 2CP-C cell suspensions reduced Tc(VII) indirectly via an Fe(II)-mediated mechanism. Fe(II) produced by strain 2CP-C from either ferrihydrite or Hanford Site sediment rapidly removed (99)Tc(VII)O(4)(-) from solution. These findings expand our knowledge of the radionuclide reduction processes catalysed by Anaeromyxobacter spp. that may influence the fate and transport of radionuclide contaminants in the subsurface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2008.01795.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!