The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA-like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6-3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2-8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and beta-Proteobacteria. Modified primers designed around previously characterized and newly identified aroA-like genes successfully amplified new lineages of aroA-like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA-like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences identified in the current study expand the phylogenetic distribution of known Mo-pterin arsenite oxidase genes, and suggest the importance of three prominent genera of the order Aquificales in arsenite oxidation across geochemically distinct geothermal habitats ranging in pH from 2.6 to 8.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2008.01781.xDOI Listing

Publication Analysis

Top Keywords

arsenite oxidase
16
oxidase genes
12
16s rrna
12
aroa-like genes
12
microbial oxidation
8
genes
8
geothermal systems
8
arsenite oxidation
8
current study
8
arsenite-oxidation rates
8

Similar Publications

Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes.

ISME Commun

January 2024

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China.

Article Synopsis
  • Microbes are essential in the arsenic biogeochemical cycle, using unique metabolic pathways to cope with arsenic toxicity, but the differences in how prokaryotic and eukaryotic microbes detoxify arsenic are not well understood.
  • Research identified a variety of arsenic biotransformation genes in 670 microbial genomes, revealing that prokaryotes have a broader range of genes for arsenic reduction and efflux while fungi possess more genes related to arsenic oxidation.
  • Findings show significant differences in gene expression and evolutionary rates between prokaryotes and fungi, underscoring the need to understand the diverse strategies microbes use for arsenic detoxification rather than focusing on individual genes.
View Article and Find Full Text PDF

Purpose: Present study deals with the role of gamma irradiation in modulating arsenic bioremediation of sp. AK1 and AK9 strains.

Materials And Methods: The bacterial strains AK1 and AK9 of sp.

View Article and Find Full Text PDF

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh.

View Article and Find Full Text PDF

Low-cost microbial remediation strategies serve as a viable and potent weapon for curbing the arsenic menace. In the present study, two arsenic-resistant bacteria were isolated from the contaminated lentil rhizosphere in Gangetic plain of eastern India. LAR-21 (, MW356875) and LAR-25 (, MW356894) could remove 87.

View Article and Find Full Text PDF

A freshwater photosynthetic arsenite-oxidizing bacterium, Cereibacter azotoformans strain ORIO, was isolated from Owens River, CA, USA. The waters from Owens River are elevated in arsenic and serve as the headwaters to the Los Angeles Aqueduct. The complete genome sequence of strain ORIO is 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!