Mastitis is not only a major cause of economic losses to the dairy industry but also a major problem in ensuring the quality and safety of the milk, associated with high somatic cell counts and residues of antibiotics used for treatment. One innovative approach to protection against mastitis is to stimulate the animal's natural defense mechanisms. Technological advances in immunological research have increased our ability to exploit the immunity of the bovine mammary gland during periods of high susceptibility to disease. The trace element selenium affects the innate and the adaptive immune responses of the mammary gland through cellular and humoral activities. Substantial research has been carried out on the effect of selenium (Se) on the immune function of the mammary gland and subsequent improvement in bovine udder health and mastitis control. Levels higher than current recommendations and Se-yeast can potentially be used to enhance our capacity to modulate the physiological mechanisms of the bovine mammary gland to respond to infection. This article provides an overview of the most recent research in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1466252308001588DOI Listing

Publication Analysis

Top Keywords

mammary gland
20
bovine mammary
12
immune function
8
mammary
5
gland
5
role dietary
4
dietary selenium
4
bovine
4
selenium bovine
4
gland health
4

Similar Publications

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.

View Article and Find Full Text PDF

Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g.

View Article and Find Full Text PDF

Resveratrol Alleviates NEFA-Induced Oxidative Damage in Bovine Mammary Epithelial Cells by Restoring Mitochondrial Function.

Animals (Basel)

January 2025

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

In periparturient dairy cows, high non-esterified fatty acids (NEFAs) caused by a severe negative energy balance induce oxidative stress and metabolic dysfunction, which pose a severe challenge to the dairy industry. Resveratrol (RES) is a polyphenolic compound with antioxidant, anti-inflammatory and multiple other physiological effects. However, its effect on oxidative damage triggered by NEFAs in bovine mammary epithelial cells is rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!