A trunk of human cytidylate-phosphate-deoxyguanylate-binding protein/CXXC finger protein 1 (CFP1), immobilized onto an aminohexyl-Sepharose column, can be used as a preanalytical tool for the selective enrichment of bacterial DNA from mixed solutions with high amounts of human background DNA for nucleic acid amplification technique-based detection of pathogens. The transcriptional activator protein exhibits a high affinity for nonmethylated CpG dinucleotide motifs, which are differentially distributed in prokaryotic and higher eukaryotic genomes. The feasibility of the affinity chromatography (AC) step was tested with DNA from severely septic patients. AC using 16S rRNA gene primers substantially increased PCR sensitivity. Approximately 90% of eukaryotic DNA was removed, which significantly increased the signal-to-noise ratio. Threshold cycle values revealed that sensitivity was elevated at least 10-fold. The change in the ratio of bacterial DNA to human DNA increased from 26% to 74% the likelihood of culture-independent PCR-based identification of bacterial presence. Compared to the results seen with blood culture (which is the clinical gold standard for systemic infections, exhibiting 28% positives), the combination of AC and PCR achieves a significant increase in sensitivity and contributes to shortening the time to results for the initiation of guided antibiotic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668332PMC
http://dx.doi.org/10.1128/JCM.02242-08DOI Listing

Publication Analysis

Top Keywords

human cytidylate-phosphate-deoxyguanylate-binding
8
nucleic acid
8
acid amplification
8
amplification technique-based
8
technique-based detection
8
bacterial dna
8
dna
6
truncated human
4
cytidylate-phosphate-deoxyguanylate-binding protein
4
protein improved
4

Similar Publications

A trunk of human cytidylate-phosphate-deoxyguanylate-binding protein/CXXC finger protein 1 (CFP1), immobilized onto an aminohexyl-Sepharose column, can be used as a preanalytical tool for the selective enrichment of bacterial DNA from mixed solutions with high amounts of human background DNA for nucleic acid amplification technique-based detection of pathogens. The transcriptional activator protein exhibits a high affinity for nonmethylated CpG dinucleotide motifs, which are differentially distributed in prokaryotic and higher eukaryotic genomes. The feasibility of the affinity chromatography (AC) step was tested with DNA from severely septic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!