RNA silencing is a conserved pathway that functions as an antiviral mechanism. The majority of viruses encode silencing suppressors that interfere with siRNA- and miRNA-guided silencing pathways. The insect flock house virus B2 protein (FHVB2) functions as an RNAi silencing suppressor that inhibits siRNA biogenesis. Here, we describe the generation of a GFP silent sensor line (Sf21) and a GFP sensor line expressing FHVB2 to study RNAi suppression mechanisms. Overexpression of FHVB2 resulted in suppression of GFP-RNAi and resumption of GFP expression. Protein fractionation studies with FHVB2-transfected cells showed that FHVB2 associates with a high-molecular-weight complex of Dicer and dsRNA/siRNAs. Yeast two-hybrid and pulldown assays revealed an interaction between FHVB2 and Drosophila Dicer proteins that appeared to involve PAZ domains. To map the FHVB2 domains interacting with Dicer, we used a 17-residue C-terminal deletion mutant. RNAi suppression was reversed in cells transfected with the FHVB2 mutant as revealed by loss of GFP. Additional yeast two-hybrid and in vitro pulldown assays confirmed that the C-terminal region of FHVB2 was involved in the interaction with the PAZ domains of Dicers. These results thus reveal a novel interaction between FHVB2 and Dicer that leads to suppression of siRNA biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.08-125120DOI Listing

Publication Analysis

Top Keywords

fhvb2
9
rna silencing
8
flock house
8
house virus
8
virus protein
8
interaction paz
8
sirna biogenesis
8
rnai suppression
8
yeast two-hybrid
8
pulldown assays
8

Similar Publications

Unlabelled: RNA silencing plays a key role in shielding plant and animal hosts against viral invasion and infection. Viruses encode RNA silencing suppressors (RSS) to block small RNA guided silencing of viral transcripts. The B2 protein encoded by (FHV) is a well-characterized RSS that facilitates infection in insects.

View Article and Find Full Text PDF

Transgene-mediated suppression of the RNA interference pathway in Aedes aegypti interferes with gene silencing and enhances Sindbis virus and dengue virus type 2 replication.

Insect Mol Biol

February 2013

Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA.

RNA interference (RNAi) is the major innate antiviral pathway in Aedes aegypti that responds to replicating arboviruses such as dengue virus (DENV) and Sindbis virus (SINV). On the one hand, the mosquito's RNAi machinery is capable of completely eliminating DENV2 from Ae. aegypti.

View Article and Find Full Text PDF

Viruses and siRNA/miRNA machinery of the host cell interact in diverse ways with the virus encoded RNAi suppressor proteins. These interactions have implications on the replication and pathogenicity of the virus and also on the immune response of the host. Suppressor protein B2 of insect Flock House Virus (FHVB2), has been shown to mediate RNAi suppression via N-terminal region by directly binding to dsRNA.

View Article and Find Full Text PDF

RNA silencing is a conserved pathway that functions as an antiviral mechanism. The majority of viruses encode silencing suppressors that interfere with siRNA- and miRNA-guided silencing pathways. The insect flock house virus B2 protein (FHVB2) functions as an RNAi silencing suppressor that inhibits siRNA biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!