Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater.

Environ Sci Technol

Aquatic Ecology and Ecosystem Studies, School of Environmental Systems Engineering, The University of Western Australia, 35 Stirling Highway, M015, Crawley, Western Australia 6009, Australia.

Published: December 2008

Phytoplankton blooms containing elevated levels of cyanobacteria are common in wastewatertreatment plants. Microcystis aeruginosa, the most common freshwater cyanobacterial species, produces the hepatotoxin microcystin, which is a threat to human and environmental health. Blooms also affect the viability of treating and reusing water and cause problems when detritus accumulates in pipe and pumping delivery infrastructure. We proposed the application of hydrogen peroxide (H2O2) to induce cyanobacterial cell death. Spectral fingerprinting of phytoplankton into four groups (cyanobacteria, chlorophyta, diatoms, and cryptophyta) allowed for determination of equivalent chlorophyll-a (chl-a) concentrations contributed by photosynthetic pigments, an indicative measure of the photosynthetic activity of each phytoplankton group. This was used to establish the effect of H2O2 addition on phytoplankton in wastewater samples. The lowest H2O2 dose that caused statistically significant exponential decay of phytoplankton groups was approximately 3.0 x 10(-3) g H2O2/microg phytoplankton chl-a. At this dose, cyanobacteria and total phytoplankton exhibited a half-life of 2.3 and 4.5 h, respectively. Cyanobacteria decayed at a rate approximately twice that of chlorophyta and diatoms, and the combined chl-a of all phytoplankton groups decreased to negligible levels within 48 h of H202 application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es801717yDOI Listing

Publication Analysis

Top Keywords

phytoplankton groups
12
phytoplankton
9
application hydrogen
8
hydrogen peroxide
8
phytoplankton wastewater
8
chlorophyta diatoms
8
cyanobacteria
5
peroxide removal
4
removal toxic
4
toxic cyanobacteria
4

Similar Publications

The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals.

View Article and Find Full Text PDF

Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.

View Article and Find Full Text PDF

Diazotrophs have made significant contributions to marine nitrogen cycles. However, their distribution patterns and determined mechanisms have not been fully understood, particularly at the small regional scales. Here, the diazotrophic community structure by different sample sizes (0.

View Article and Find Full Text PDF

Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.

View Article and Find Full Text PDF

As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!