Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

Environ Sci Technol

USDA-ARS, U.S. Salinity Laboratory, 450 W. Big Springs Rd., Riverside, California 92507, USA.

Published: December 2008

A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es800675tDOI Listing

Publication Analysis

Top Keywords

volatilization rates
12
surface irrigations
8
total emission
8
emission losses
8
volatilization rate
8
volatilization
7
13-d
5
sequential surface
4
irrigations field-scale
4
field-scale emissions
4

Similar Publications

The antimicrobial and antibiofilm properties of plant essential oils (EOs) have aroused significant interest for their potential as effective alternatives or supplements in combating microbial infections and biofilm-associated challenges. For these applications, EOs must be encapsulated to overcome some key technical limitations, including high volatility, poor stability, and low solubility. This study aimed to develop microencapsulated EOs derived from two valuable Moroccan medicinal plants, Lavandula stoechas L.

View Article and Find Full Text PDF

Tea tree oil nanoemulsion targets AgrA protein potentiates amoxicillin efficacy against methicillin-resistant Staphylococcus aureus.

Int J Biol Macromol

December 2024

School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:

The excessive utilization of antibiotics gives rise to the development of bacterial resistance, the deterioration of animal immune functions, the increase in mortality rates, and the undermining of human immunity. Therefore, there is an urgent necessity to explore new antimicrobial agents or alternatives to tackle bacterial resistance. We investigated tea tree oil (TTO), a pure natural plant essential oil extracted from Melaleuca leaves, which exerted efficient antibacterial activities.

View Article and Find Full Text PDF

The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment.

View Article and Find Full Text PDF

Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions.

View Article and Find Full Text PDF

In the current century, air pollution is known as one of the most critical environmental problems and it is important to find the relations of air pollution and human health. Various air pollutants, such as volatile organic compounds (VOCs), can negatively affect women's fertility. An exhaustive electronic search was done from 2013 until July 2023 in PUBMED and The Cochrane Central Register of Controlled Trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!