Background: FDA Guidance for pharmacokinetic (PK) testing of levothyroxine (L-T(4)) for interbrand bioequivalence has evolved recently. Concerns remain about efficacy and safety of the current protocol, based on PK analysis following supraphysiological L-T(4) dosing in euthyroid volunteers, and recent recalls due to intrabrand manufacturing problems also suggest need for further refinement. We examine these interrelated issues quantitatively, using simulated what-if scenarios testing efficacy of a TSH-based protocol and tablet stability and absorption, to enhance precision of L-T(4) bioequivalence methods.
Methods: We use an updated simulation model of human thyroid hormone regulation quantified and validated from data that span a wide range of normal and abnormal thyroid system function. Bioequivalence: We explored a TSH-based protocol, using normal replacement dosing in simulated thyroidectomized patients, switching brands after 8 weeks of full replacement dosing. We simulated effects of tablet potency differences and intestinal absorption differences on predicted plasma TSH, T(4), and triiodothyronine (T(3)) dynamics. Stability: We simulated effects of potency decay and lot-by-lot differences in realistic scenarios, using actual tablet potency data spanning 2 years, comparing the recently reduced 95-105% FDA-approved potency range with the original 90-110% range.
Results: A simulated decrease as small as 10-15% in L-T(4) or its absorption generated TSH concentrations outside the bioequivalence target range (0.5-2.5 mU/L TSH), whereas T(3) and T(4) plasma levels were maintained normal. For a 25% reduction, steady-state TSH changed 300% (from 1.5 to 6 mU/L) compared with <25% for both T(4) and T(3) (both within their reference ranges). Stability: TSH, T(4), and T(3) remained within normal ranges for most potency decay scenarios, but tablets of the same dose strength and brand were not bioequivalent between lots and between fresh and near-expired tablets.
Conclusions: A pharmacodynamic TSH-measurement bioequivalence protocol, using normal L-T(4) replacement dosing in athyreotic volunteers, is likely to be more sensitive and safer than current FDA Guidance based on T(4) PK. The tightened 95-105% allowable potency range for L-T(4) tablets is a significant improvement, but otherwise acceptable potency differences (whether due to potency decay or lot-by-lot inconsistencies) may be problematic for some patients, for example, those undergoing high-dose L-T(4) therapy for cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858298 | PMC |
http://dx.doi.org/10.1089/thy.2008.0148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!