CD38 is a type II transmembrane glycoprotein with multiple functions. It acts as an ecto-enzyme as well as a receptor. The enzymatic activity catalyzes the formation of two potent Ca(2+) releasing agents: cyclic adenosine diphosphate ribose (cADPR) from nicotinamide adenine dinucleotide (NAD) and nicotinic acid adenine dinucleotide phosphate (NAADP) from NAD phosphate (NADP). The receptor function of CD38 leads to the phosphorylation of intracellular signaling proteins and the up-regulation of cytokine production in immune cells. These two functions of CD38 underlie its involvement in various biological processes, such as hormone secretion, immune cell differentiation, and immune responses. Clinically, CD38 is used as a negative prognosis marker for chronic lymphatic leukemia (CLL). However, a clear molecular understanding of CD38's role in physiology and pathology is still lacking. To facilitate the study of CD38 at cellular and molecular levels, here we report a mechanism-based method for fluorescently labeling CD38 on live cells. This labeling method does not interfere with the receptor function of CD38 and the downstream signaling. The labeling method is thus a useful tool to study the receptor function of CD38 in live cells. In addition, since the mechanism-based labeling also inhibits the enzymatic activity of CD38, it should be useful for dissecting the receptor function of CD38 without interference from its enzyme function in complicated biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644825 | PMC |
http://dx.doi.org/10.1021/ja808387g | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!