Procyanidins (PCs) are highly abundant phenolic compounds in the human diet and might be responsible for the health effects of chocolate and wine. Due to low absorption of intact PCs, microbial metabolism might play an important role. So far, only a few studies, with crude extracts rich in PCs but also containing a multitude of other phenolic compounds, have been performed to reveal human microbial PC metabolites. Therefore, the origin of the metabolites remains questionable. This study included in vitro fermentation of purified PC dimers with human microbiota. The main metabolites identified were 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone. Other metabolites detected were 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3-hydroxyphenylpropionic acid, phenylvaleric acids, monohydroxylated phenylvalerolactone, and 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol. Metabolites that could be quantified accounted for at least 12 mol % of the dimers, assuming 1 mol of dimers is converted into 2 mol of metabolite. A degradation pathway, partly different from that of monomeric flavan-3-ols, is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf803059zDOI Listing

Publication Analysis

Top Keywords

human microbiota
8
2-34-dihydroxyphenylacetic acid
8
acid 5-34-dihydroxyphenyl-gamma-valerolactone
8
phenolic compounds
8
mol dimers
8
metabolites
6
acid
5
procyanidin dimers
4
dimers metabolized
4
human
4

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention.

Nutrients

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China.

Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured.

View Article and Find Full Text PDF

A Randomized Pilot Study of Time-Restricted Eating Shows Minimal Microbiome Changes.

Nutrients

January 2025

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.

Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).

View Article and Find Full Text PDF

Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!