Design of core--shell-type nanoparticles carrying stable radicals in the core.

Biomacromolecules

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Published: March 2009

Utilizing the self-assembled core-shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core-shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm801278nDOI Listing

Publication Analysis

Top Keywords

radicals core
12
stable radicals
8
nanoparticles
7
design core--shell-type
4
core--shell-type nanoparticles
4
nanoparticles carrying
4
carrying stable
4
core utilizing
4
utilizing self-assembled
4
self-assembled core-shell-type
4

Similar Publications

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis.

Acc Chem Res

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.

View Article and Find Full Text PDF

The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.

View Article and Find Full Text PDF

Purpose: Prostate-specific membrane-antigen positron emission tomography (PSMA PET) is a promising candidate for non-invasive characterization of prostate cancer (PCa). This study evaluated whether PET with tracers [Ga]Ga-PSMA-11 or [F]PSMA-1007 is capable to depict intratumour heterogeneity of histological PSMA expression.

Methods: Thirty-five patients with biopsy-proven primary PCa without evidence of metastatic disease nor prior interventions were prospectively enrolled.

View Article and Find Full Text PDF

Background: Patients with primary liver cancer (PLC) experience a range of symptoms in the early postoperative period. Symptoms include cancer-related symptoms and adverse effects of treatment. Exploring the core symptoms and their dynamics in the early post-hepatectomy patients may help provide better symptom management programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!