Liquid water is essential to life as we know it on Earth; therefore, the search for water on Mars is a critical component of the search for life. Olivine, a mineral identified as present on Mars, has been proposed as an indicator of the duration and characteristics of water because it dissolves quickly, particularly under low-pH conditions. The duration of olivine persistence relative to glass under conditions of aqueous alteration reflects the pH and temperature of the reacting fluids. In this paper, we investigate the utility of 3 methodologies to detect silicate weathering in a Mars analog environment (Sverrefjell volcano, Svalbard). CheMin, a miniature X-ray diffraction instrument developed for flight on NASA's upcoming Mars Science Laboratory, was deployed on Svalbard and was successful in detecting olivine and weathering products. The persistence of olivine and glass in Svalbard rocks was also investigated via laboratory observations of weathered hand samples as well as an in situ burial experiment. Observations of hand samples are consistent with the inference that olivine persists longer than glass at near-zero temperatures in the presence of solutions at pH approximately 7-9 on Svalbard, whereas in hydrothermally altered zones, glass has persisted longer than olivine in the presence of fluids at similar pH at approximately 50 degrees C. Analysis of the surfaces of olivine and glass samples, which were buried on Sverrefjell for 1 year and then retrieved, documented only minor incipient weathering, though these results suggest the importance of biological impacts. The 3 types of observations (CheMin, laboratory observations of hand samples, burial experiments) of weathering of olivine and glass at Svalbard show promise for interpretation of weathering on Mars. Furthermore, the weathering relationships observed on Svalbard are consistent with laboratory-measured dissolution rates, which suggests that relative mineral dissolution rates in the laboratory, in concert with field observations, can be used to yield valuable information regarding the pH and temperature of reacting martian fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2007.0195DOI Listing

Publication Analysis

Top Keywords

olivine glass
12
hand samples
12
olivine
9
olivine weathering
8
temperature reacting
8
weathering mars
8
glass svalbard
8
laboratory observations
8
observations hand
8
dissolution rates
8

Similar Publications

The Apollo 17 73001/73002 double drive tube, collected at the base of the South Massif in the Taurus-Littrow Valley, was opened in 2019 as part of the Apollo Next Generation Sample Analysis program (ANGSA). A series of continuous thin sections were prepared capturing the full length of the upper portion of the double drive tube (73002). The aim of this study was to use Quantitative Evaluation of Minerals by SCANing electron microscopy (QEMSCAN), to search for clasts of non-lunar meteoritic origin and to analyze the mineralogy and textures within the core.

View Article and Find Full Text PDF

Rationale: Micrometeorites are extraterrestrial particles smaller than ~2 mm in diameter, most of which melted during atmospheric entry and crystallised or quenched to form 'cosmic spherules'. Their parentage among meteorite groups can be inferred from triple-oxygen isotope compositions, for example, by secondary ion mass spectrometry (SIMS). This method uses sample efficiently, preserving spherules for other investigations.

View Article and Find Full Text PDF

Nature of the lunar far-side samples returned by the Chang'E-6 mission.

Natl Sci Rev

November 2024

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China.

The Chang'E-6 (CE-6) mission successfully achieved return of the first samples from the far side of the Moon. The sampling site of CE-6 is located in the South Pole-Aitken (SPA) basin-the largest, deepest and oldest impact basin on the Moon. The 1935.

View Article and Find Full Text PDF

Olivine-like NaFePO glasses and nanocomposites are promising materials for cathodes in sodium batteries. Our previous studies focused on the preparation of NaFePO glass, transforming it into a nanocomposite using high-pressure-high-temperature treatment, and comparing both materials' structural, thermal, and DC electric conductivity. This work focuses on specific features of AC electric conductivity, containing messages on the dynamics of translational processes.

View Article and Find Full Text PDF

Secondary fluorescence (SF) is known to be a potential source of error in electron probe microanalysis (EPMA) when analyzing for a trace or minor element near a phase boundary. This often overlooked effect leads to a concentration enhancement whenever the neighboring phase contains a high concentration of the analyzed element. Here we show that SF may also lead to a concentration decrease, which can be mistakenly interpreted as a depletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!