The thermodynamic consistency of the isobaric heat capacity per unit volume at constant composition C(p,x) and the density rho near the liquid-liquid critical point is studied in detail. To this end, C(p,x)(T), rho(T), and the slope of the critical line (dT/dp)(c) for five binary mixtures composed by 1-nitropropane and an alkane were analyzed. Both C(p,x)(T) and rho(T) data were measured along various quasicritical isopleths with a view to evaluate the effect of the uncertainty in the critical composition value on the corresponding critical amplitudes. By adopting the traditionally employed strategies for data treatment, consistency within 0.01 K MPa(-1) (or 8%) is attained, thereby largely improving the majority of previous results. From temperature range shrinking fits and fits in which higher-order terms in the theoretical expressions for C(p,x)(T) and rho(T) are included, we conclude that discrepancies come mainly from inherent difficulties in determining the critical anomaly of rho accurately: specifically, to get full consistency, higher-order terms in rho(T) are needed; however, the various contributions at play cannot be separated unambiguously. As a consequence, the use of C(p,x)(T) and (dT/dp)(c) for predicting the behavior of rho(T) at near criticality appears to be the best choice at the actual experimental resolution levels. Furthermore, the reasonably good thermodynamic consistency being encountered confirms that previous arguments appealing to the inadequacy of the theoretical expression relating C(p,x) and rho for describing data in the experimentally accessible region must be fairly rejected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3054351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!