The field of magnetic resonance imaging-guided high-intensity focused ultrasound surgery (MRgFUS) is a rapidly evolving one, with many potential applications in neurosurgery. The first of 3 articles on MRgFUS, this article focuses on the historical development of the technology and its potential applications in modern neurosurgery. The evolution of MRgFUS has occurred in parallel with modern neurological surgery, and the 2 seemingly distinct disciplines share many of the same pioneering figures. Early studies on focused ultrasound treatment in the 1940s and 1950s demonstrated the ability to perform precise lesioning in the human brain, with a favorable risk-benefit profile. However, the need for a craniotomy, as well as the lack of sophisticated imaging technology, resulted in limited growth of high-intensity focused ultrasound for neurosurgery. More recently, technological advances have permitted the combination of high-intensity focused ultrasound along with magnetic resonance imaging guidance to provide an opportunity to effectively treat a variety of central nervous system disorders. Although challenges remain, high-intensity focused ultrasound-mediated neurosurgery may offer the ability to target and treat central nervous system conditions that were previously extremely difficult to address. The remaining 2 articles in this series will focus on the physical principles of modern MRgFUS as well as current and future avenues for investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068031PMC
http://dx.doi.org/10.1227/01.NEU.0000336766.18197.8EDOI Listing

Publication Analysis

Top Keywords

high-intensity focused
20
focused ultrasound
20
ultrasound surgery
8
magnetic resonance
8
potential applications
8
central nervous
8
nervous system
8
high-intensity
5
ultrasound
5
focused
5

Similar Publications

Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.

View Article and Find Full Text PDF

Treating colorectal liver metastases (CLMs) located at the hepatocaval confluence with surgery is challenging due to its complexity and associated high risks of perioperative mortality and morbidity. Moreover, thermal ablation techniques are sensitive to the "heat-sink" effect, which reduces their efficacy when tumors are in contact with major blood vessels. In this study we evaluated the feasibility and safety of an intraoperative high-intensity focused ultrasound (HIFU) device for destroying liver tissue volumes sufficiently large to consider treating CLMs at the hepatocaval confluence.

View Article and Find Full Text PDF

Introduction: Aesthetic medicine has evolved towards minimally invasive procedures, with biostimulators like Poly-L-Lactic Acid (PLLA), Calcium Hydroxylapatite (CaHA), and Polycaprolactone (PCL) gaining attention for their role in collagen induction, improving skin texture, elasticity, and volume. Combining these agents with other treatments-such as botulinum toxin, dermal fillers, and energy-based devices (e.g.

View Article and Find Full Text PDF

Adenomyosis is a commonly encountered pathology in women of reproductive age and frequently coexists with infertility. The effect of adenomyosis on fertility, particularly on fertilisation and intracytoplasmic sperm injection outcomes, is not well understood. Various pretreatment modalities have been used to improve pregnancy rates and live birth outcomes; however, because of a lack of high-quality evidence, there is no clear consensus on the best pretreatment option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!