Xenopus laevis is an excellent animal for analyzing early vertebrate development. Various effects of glycosaminoglycans (GAGs) on growth factor-related cellular events during embryogenesis have been demonstrated in Xenopus. To elucidate the relationship between alterations in fine structure and changes in the specificity of growth factor binding during Xenopus development, heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) chains were isolated at four different embryonic stages and their structure and growth factor-binding capacities were compared. The total amounts of both HS and CS/DS chains decreased from the pre-midblastula transition to the gastrula stage, but increased exponentially during the following developmental stages. The length of HS chains was not significantly affected by development, whereas that of CS/DS chains increased with development. The disaccharide composition of GAGs in embryos also changed during development. The degree of sulfation of the HS chains gradually decreased with development. The predominant sulfation position in the CS/DS chains shifted from C4 to C6 of GalNAc during embryogenesis. Growth factor-binding experiments using a BIAcore system demonstrated that GAGs bound growth factors including fibroblast growth factors-1 and -2, midkine, and pleiotrophin, with comparable affinities. These affinities significantly varied during development, although the correlation between the structural alterations of GAGs and the change in the ability to bind growth factors remains to be clarified. The expression of saccharide sequences, which specifically interact with a growth factor, might be regulated during development.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwp005DOI Listing

Publication Analysis

Top Keywords

cs/ds chains
16
xenopus laevis
8
development
8
growth
8
growth factor
8
growth factor-binding
8
growth factors
8
chains
6
structural functional
4
functional changes
4

Similar Publications

Glycosaminoglycans (GAGs) are sulfated linear -glycan chains abundantly expressed in the extracellular matrix (ECM). Among GAGs, chondroitin sulfate (CS) and dermatan sulfate (DS) play important roles at the brain level, where the distribution and location of the sulfates within the CS/DS chains are responsible for numerous biological events. The diversity of the neural hybrid CS/DS expressed in the brain and the need to elucidate their structure gave rise to considerable efforts toward the development of analytical methods able to discover novel regularly and irregularly sulfated domains.

View Article and Find Full Text PDF

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid.

View Article and Find Full Text PDF

Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) with unique structures from marine animals show intriguing pharmacological activities and negligible biological risks, providing more options for us to explore safer agents. The swim bladder is a tonic food and folk medicine, and its GAGs show good anticoagulant activity. In this study, two GAGs, CMG-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!