CO dehydrogenase from the Gram-negative chemolithoautotrophic eubacterium Oligotropha carboxidovorans OM5 is a structurally characterized molybdenum-containing iron-sulfur flavoenzyme, which catalyzes the oxidation of CO (CO + H(2)O --> CO(2) + 2e(-) + 2H(+)). It accommodates in its active site a unique bimetallic [CuSMoO(2)] cluster, which is subject to post-translational maturation. Insertional mutagenesis of coxD has established its requirement for the assembly of the [CuSMoO(2)] cluster. Disruption of coxD led to a phenotype of the corresponding mutant OM5 D::km with the following characteristics: (i) It was impaired in the utilization of CO, whereas the utilization of H(2) plus CO(2) was not affected; (ii) Under appropriate induction conditions bacteria synthesized a fully assembled apo-CO dehydrogenase, which could not oxidize CO; (iii) Apo-CO dehydrogenase contained a [MoO(3)] site in place of the [CuSMoO(2)] cluster; and (iv) Employing sodium sulfide first and then the Cu(I)-(thiourea)(3) complex, the non-catalytic [MoO(3)] site could be reconstituted in vitro to a [CuSMoO(2)] cluster capable of oxidizing CO. Sequence information suggests that CoxD is a MoxR-like AAA+ ATPase chaperone related to the hexameric, ring-shaped BchI component of Mg(2+)-chelatases. Recombinant CoxD, which appeared in Escherichia coli in inclusion bodies, occurs exclusively in cytoplasmic membranes of O. carboxidovorans grown in the presence of CO, and its occurrence coincided with GTPase activity upon sucrose density gradient centrifugation of cell extracts. The presumed function of CoxD is the partial unfolding of apo-CO dehydrogenase to assist in the stepwise introduction of sulfur and copper in the [MoO(3)] center of the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666610PMC
http://dx.doi.org/10.1074/jbc.M805354200DOI Listing

Publication Analysis

Top Keywords

[cusmoo2] cluster
20
apo-co dehydrogenase
12
oligotropha carboxidovorans
8
aaa+ atpase
8
atpase chaperone
8
[moo3] site
8
coxd
6
dehydrogenase
5
[cusmoo2]
5
cluster
5

Similar Publications

Oligotropha carboxidovorans is characterized by the aerobic chemolithoautotrophic utilization of CO. CO oxidation by CO dehydrogenase proceeds at a unique bimetallic [CuSMoO2] cluster which matures posttranslationally while integrated into the completely folded apoenzyme. Kanamycin insertional mutants in coxE, coxF and coxG were characterized with respect to growth, expression of CO dehydrogenase, and the type of metal center present.

View Article and Find Full Text PDF

CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO₂] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E.

View Article and Find Full Text PDF

Carbon monoxide dehydrogenase from the aerobic bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO(2), yielding two electrons and two H(+). The steady-state kinetics of the enzyme exhibit a pH optimum of 7.2 with a k(cat) of 93.

View Article and Find Full Text PDF

CO dehydrogenase from the Gram-negative chemolithoautotrophic eubacterium Oligotropha carboxidovorans OM5 is a structurally characterized molybdenum-containing iron-sulfur flavoenzyme, which catalyzes the oxidation of CO (CO + H(2)O --> CO(2) + 2e(-) + 2H(+)). It accommodates in its active site a unique bimetallic [CuSMoO(2)] cluster, which is subject to post-translational maturation. Insertional mutagenesis of coxD has established its requirement for the assembly of the [CuSMoO(2)] cluster.

View Article and Find Full Text PDF

Carbon monoxide dehydrogenase from the bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO(2) at a unique [CuSMoO(2)] cluster. In the bacteria the cluster is assembled post-translational. The integration of S, and particularly of Cu, is rate limiting in vivo, which leads to CO dehydrogenase preparations containing the mature and fully functional enzyme along with forms of the enzyme deficient in one or both of these elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!