The development of biodegradable materials with controllable degradation properties is beneficial for a variety of applications. Poly(glycerol-sebacate) (PGS) is a promising candidate of biomaterials; so we synthesize a series of poly(glycerol, sebacate, glycolic acid) (PGSG) with 1:2:0, 1:2:0.2, 1:2:0.4, 1:2:0.6, 1:2:1 mole ratio of glycerol, sebacate, and glycolic acid to elucidate the relation of doped glycolic acid to the degradation rate and mechanical properties. The microstructures of the polymers with different doping of glycolic acid were dissimilar. PGSG with glycolic acid in the ratio of 0.2 displayed an integral degree of ordering, different to those with glycolic acid in the ratio of 0, 0.4, 0.6, and 1, which showed mild phase separation structure. The number, DeltaH(m), and temperature of the PGSG melting peaks tended to decrease with the increasing ratio of doped glycolic acid. In vitro and in vivo degradation tests showed that the degradation rate of PGSG with glycolic acid in the ratio of 0.2 was slowest, but in the ratio range of 0, 0.4, and 0.6, the degradation rate increased with the increase of glycolic acid. All PGSG samples displayed good tissue response and anticoagulant effects. Our data suggest that doping glycolic acid can modulate the microstructure and degree of crosslinking of PGS, thereby control the degradation rate of PGS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32370 | DOI Listing |
Polymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China.
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.
View Article and Find Full Text PDFChemMedChem
January 2025
Institute of Himalayan Bioresource Technology CSIR, Dietetics & Nutrition Technology Division, Palampur, 176061, Palampur, INDIA.
Gemcitabine (GEM), a chemotherapeutic agent, is widely utilized in treating various neoplasm conditions, such as pancreatic, lung, breast, and ovarian cancers. However, its therapeutic effectiveness is often hindered by its hydrophilic nature, short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new prodrugs of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)].
View Article and Find Full Text PDFJ Phys Chem B
January 2025
MaterialX LTD, Bristol BS4 1NF, U.K.
A challenging topic in materials engineering is the development of numerical models that can accurately predict material properties with atomistic accuracy, matching the scale and level of detail achieved by experiments. In this regard, coarse-grained (CG) molecular dynamics (MD) simulations are a popular method for achieving this goal. Despite the efforts of the scientific community, a reliable CG model with quasi-atomistic accuracy has not yet been fully achieved for the design and prototyping of materials, especially polymers.
View Article and Find Full Text PDFPharmaceutics
November 2024
Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!