Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M (n)) of copolymers ranged from 260 x 10(3) to 590 x 10(3)Da, and the polydispersities (M (w)/M (n)) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T (m)), glass transition temperature (T (g)), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-009-0525-zDOI Listing

Publication Analysis

Top Keywords

copolymer 4hb
12
4hb composition
12
4hb
9
p3hb-co-4hb copolymer
8
mol% 4hb
8
p3hb-co-4hb copolymers
8
degradation p3hb-co-4hb
8
p3hb-co-4hb films
8
degradation rate
8
4hb fraction
8

Similar Publications

Crosslinking-induced compatibility and toughness enhancement in poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends with epoxidized soybean oil.

Int J Biol Macromol

January 2025

Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China. Electronic address:

Polylactide (PLA) is inherently brittle and lacks ductility, which greatly restricts its range of applications. In order to address these issues, we blended PLA with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and introduced epoxidized soybean oil (ESBO) as a reactive modifier to enhance the properties of the PLA/P(3HB-co-4HB) blends. Furthermore, we used theoretical calculations, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Soxhlet extraction, differential scanning calorimetry (DSC), polarising optical microscopy (POM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical testing to investigate the compatibility, crystallization behavior, microstructure, thermal and mechanical properties of the PLA/P(3HB-co-4HB)/ESBO blends.

View Article and Find Full Text PDF

The biological and therapeutic assessment of a P(3HB-co-4HB)-bioactive glass-graphene composite biomaterial for tissue regeneration.

J Biomed Mater Res B Appl Biomater

July 2024

Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, London, UK.

An ideal wound dressing should create a healing environment that relieves pain, protects against infections, maintains moisture, removes debris, and speeds up wound closure and repair. However, conventional options like gauze often fall short in fulfilling these requirements, especially for chronic or nonhealing wounds. Hence there is a critical need for inventive formulations that offer efficient, cost-effective, and eco-friendly alternatives.

View Article and Find Full Text PDF

A long-term growth stable Halomonas sp. deleted with multiple transposases guided by its metabolic network model Halo-ecGEM.

Metab Eng

July 2024

School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China. Electronic address:

Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering.

View Article and Find Full Text PDF

Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 μm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity.

View Article and Find Full Text PDF

The clinical management of wounds is known to be a significant challenge: not only does the dressing need to ensure and provide the appropriate barrier and healing characteristics, but consideration of patient compliance concerning comfort, functionality, and practicality also needs to be included. The poly(3-hydroxybutyrate--4-hydroxubutyrate) (P(3HB--4HB)) copolymer, isolated from USM1020 ( USM1020), was produced in the presence of excess carbon sources (1,4-butanediol and 1,6-hexanediol) using either a shake flask cultivation process or a bioreactor fermentation system. P(3HB--4HB) is widely known to be biodegradable and highly biocompatible and contains a tuneable 4HB monomer molar fraction, which is known to affect the final physicochemical properties of the intracellular copolymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!