We present a high speed phase shifting interferometer which utilizes the self injection locking of a frequency tunable laser diode. By using a confocal Fabry-Perot cavity made of ultra low expansion glass, and linearly modulating the laser diode current, the laser frequency could be injection locked to the resonant modes of the Fabry-Perot cavity consecutively. It provided equal phase steps to the interferograms which are ideal to be analyzed by the Carré algorithm. The phase step error was evaluated to be about 3 MHz which corresponds to 0.2 nm in length measurement. With this technique, profile measurements are insensitive to external vibration since four 640x480 pixels images can be acquired within 4 ms. Difference of two profile measurements, each made with and without vibration isolation, respectively, was evaluated to be 0.5 nm (rms).

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.001442DOI Listing

Publication Analysis

Top Keywords

fabry-perot cavity
12
high speed
8
speed phase
8
phase shifting
8
injection locking
8
laser frequency
8
resonant modes
8
confocal fabry-perot
8
laser diode
8
profile measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!