The heterotrimeric Toc core complex of the chloroplast protein import apparatus contains two GTPases, Toc159 and Toc34, together with the protein-conducting channel Toc75. Toc159 and Toc34 are exposed at the chloroplast surface and function in preprotein recognition. Together, they have been shown to facilitate the import of photosynthetic proteins into chloroplasts in Arabidopsis. Consequently, the ppi2 mutant lacking atToc159 has a non-photosynthetic albino phenotype. Previous mutations in the conserved G1 and G3 GTPase motifs abolished the function of Toc159 in vivo by disrupting targeting of the receptor to chloroplasts. Here, we demonstrate that a mutant in a conserved G1 lysine (atToc159 K868R) defective in GTP binding and hydrolysis can target and assemble into Toc complexes. We show that atToc159 K868R can support protein import into isolated chloroplasts, albeit at lower preprotein binding and import efficiencies compared with the wild-type receptor. Considering the absence of measurable GTPase activity in the K868R mutant, we conclude that GTP hydrolysis at atToc159 is not strictly required for preprotein translocation. The data also indicate that preprotein import requires at least one additional GTPase other than Toc159.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659226PMC
http://dx.doi.org/10.1074/jbc.M804235200DOI Listing

Publication Analysis

Top Keywords

preprotein import
8
protein import
8
toc159 toc34
8
attoc159 k868r
8
import
6
toc159
5
preprotein
5
toc159 import
4
import receptor
4
mutant
4

Similar Publications

Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.

View Article and Find Full Text PDF

Genome-wide identification of the Toc GTPase gene family in tomato and involvement of SlToc34-1 gene in fruit chloroplast development.

Plant Physiol Biochem

November 2024

College of Agriculture, Guizhou University, Guiyang, 550025, China; Vegetable Research Academy, Guizhou University, Guiyang, 550025, China; Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China. Electronic address:

Article Synopsis
  • The import of nuclear-encoded preproteins into chloroplasts is crucial for normal plant function and is facilitated by specific receptors known as Toc GTPases.
  • Researchers identified seven Toc GTPase genes in tomatoes, categorized into two subclasses, which are involved in tissue expression and hormonal responses.
  • Silencing the SIToc34-1 gene led to lighter green tomato fruits and reduced chlorophyll, suggesting its vital role in early chloroplast development and gene expression related to photosynthesis.
View Article and Find Full Text PDF

Holdase chaperones are essential in the mitochondrial membrane-protein biogenesis as they stabilize preproteins and keep them in an import-competent state as they travel through the aqueous cytosol and intermembrane space. The small TIM chaperones of the mitochondrial intermembrane space function within a fine balance of client promiscuity and high affinity binding, while being also able to release their client proteins without significant energy barrier to the downstream insertases/translocases. The tendency of the preproteins to aggregate and the dynamic nature of the preprotein-chaperone complexes makes the preparation of these complexes challenging.

View Article and Find Full Text PDF

Mitochondrial Bioenergetics of Functional Wound Closure is Dependent on Macrophage-Keratinocyte Exosomal Crosstalk.

ACS Nano

November 2024

McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.

Article Synopsis
  • This study highlights the role of macrophage-derived exosomes, particularly those enhanced with the protein TOMM70, in supporting keratinocyte function during the early stages of wound healing.* -
  • TOMM70 helps maintain mitochondrial function in leading-edge keratinocytes by compensating for depleted proteins during hypoxic conditions, which is vital for their energy needs and migration.* -
  • Disruption of exosome uptake impedes wound healing and maintains inflammation, suggesting that effective communication between keratinocytes and macrophages is crucial for recovery, especially in patients with chronic wounds.*
View Article and Find Full Text PDF

The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!