For nitramines, a general correlation has been introduced to predict electric spark sensitivity through detonation pressure. New method uses maximum obtainable detonation pressure as a fundamental relation so that it can be corrected for some nitramines which have some specific molecular structure. There is no need to use crystal density and heat of formation of nitramine explosives for predicting detonation pressure and electric spark sensitivity. The predicted electric spark sensitivities are compared with calculated results on the basis of quantum mechanical computations for some nitramines that latter can be applied. The root mean square (rms) deviations from experiment for new method and the predicted results of complicated quantum mechanical method are 1.18 and 3.49J, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.01.009 | DOI Listing |
J Exp Bot
January 2025
Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
Plant mechanical failure, known as lodging, has detrimental impacts on the quality and quantity of maize yields. Failure can occur at stalks (stalk lodging) or at roots (root lodging). While previous research has focused on proxy measures for stalk stiffness, stalk strength, and root strength, there is a need to quantify the root system stiffness, which quantifies the force-displacement relationship.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Electrical Engineering and Intelligentization, Dongguan University of Technology Dongguan 523808 China
This work employs the femtosecond laser-ablation spark-induced breakdown spectroscopy (fs-LA-SIBS) technique for the quantitative analysis of magnesium alloy samples. It integrates four machine learning models: Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), and -Nearest Neighbors (KNN) to evaluate their classification performance in identifying magnesium alloys. In regression tasks, the models aim to predict the content of four elements: manganese (Mn), aluminum (Al), zinc (Zn), and nickel (Ni) in the samples.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
The escalating challenges posed by water resource contamination, especially exacerbated by health concerns associated with microbial fungi threats, necessitate advanced disinfection technologies. Within this context, non-thermal plasma generated within bubble column reactors emerges as a promising antifungal strategy. The effects of direct plasma bubbles within different discharge modes and thus-produced plasma activated water (PAW) on the inactivation of Saccharomyces cerevisiae are investigated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!